from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.pydantic_v1 import BaseModel from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableParallel, RunnablePassthrough from langchain.vectorstores import Neo4jVector retrieval_query = """ MATCH (node)-[:HAS_PARENT]->(parent) RETURN parent.text AS text, score, {} AS metadata """ vectorstore = Neo4jVector.from_existing_index( OpenAIEmbeddings(), index_name="retrieval", node_label="Child", embedding_node_property="embedding", retrieval_query=retrieval_query, ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)