{ "cells": [ { "cell_type": "markdown", "id": "3cadcf88", "metadata": {}, "source": [ "# Using Hugging Face Datasets\n", "\n", "This example shows how to use Hugging Face datasets to evaluate models. Specifically, we show how to load examples to evaluate models on from Hugging Face's dataset package." ] }, { "cell_type": "markdown", "id": "0e3ce977", "metadata": {}, "source": [ "## Setup\n", "\n", "For demonstration purposes, we will just evaluate a simple question answering system." ] }, { "cell_type": "code", "execution_count": 1, "id": "4c10054f", "metadata": {}, "outputs": [], "source": [ "from langchain.prompts import PromptTemplate\n", "from langchain.chains import LLMChain\n", "from langchain.llms import OpenAI" ] }, { "cell_type": "code", "execution_count": 2, "id": "9abdf160", "metadata": {}, "outputs": [], "source": [ "prompt = PromptTemplate(\n", " template=\"Question: {question}\\nAnswer:\", input_variables=[\"question\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "id": "d41ef7bb", "metadata": {}, "outputs": [], "source": [ "llm = OpenAI(model_name=\"text-davinci-003\", temperature=0)\n", "chain = LLMChain(llm=llm, prompt=prompt)" ] }, { "cell_type": "markdown", "id": "cbea2132", "metadata": {}, "source": [ "## Examples\n", "\n", "Now we load a dataset from Hugging Face, and then convert it to a list of dictionaries for easier usage." ] }, { "cell_type": "code", "execution_count": 4, "id": "d2373cf1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Found cached dataset truthful_qa (/Users/harrisonchase/.cache/huggingface/datasets/truthful_qa/generation/1.1.0/70210b72382652635215516e59663843b88eda16bd2acef909fb46700beb039a)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "92216d733c694ab4bfa812614f2223a4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1 [00:00