# RAG with Timescale Vector using hybrid search This template shows how to use timescale-vector with the self-query retriver to perform hybrid search on similarity and time. This is useful any time your data has a strong time-based component. Some examples of such data are: - News articles (politics, business, etc) - Blog posts, documentation or other published material (public or private). - Social media posts - Changelogs of any kind - Messages Such items are often searched by both similarity and time. For example: Show me all news about Toyota trucks from 2022. [Timescale Vector](https://www.timescale.com/ai?utm_campaign=vectorlaunch&utm_source=langchain&utm_medium=referral) provides superior performance when searching for embeddings within a particular timeframe by leveraging automatic table partitioning to isolate data for particular time-ranges. Langchain's self-query retriever allows deducing time-ranges (as well as other search criteria) from the text of user queries. ## What is Timescale Vector? **[Timescale Vector](https://www.timescale.com/ai?utm_campaign=vectorlaunch&utm_source=langchain&utm_medium=referral) is PostgreSQL++ for AI applications.** Timescale Vector enables you to efficiently store and query billions of vector embeddings in `PostgreSQL`. - Enhances `pgvector` with faster and more accurate similarity search on 1B+ vectors via DiskANN inspired indexing algorithm. - Enables fast time-based vector search via automatic time-based partitioning and indexing. - Provides a familiar SQL interface for querying vector embeddings and relational data. Timescale Vector is cloud PostgreSQL for AI that scales with you from POC to production: - Simplifies operations by enabling you to store relational metadata, vector embeddings, and time-series data in a single database. - Benefits from rock-solid PostgreSQL foundation with enterprise-grade feature liked streaming backups and replication, high-availability and row-level security. - Enables a worry-free experience with enterprise-grade security and compliance. ### How to access Timescale Vector Timescale Vector is available on [Timescale](https://www.timescale.com/products?utm_campaign=vectorlaunch&utm_source=langchain&utm_medium=referral), the cloud PostgreSQL platform. (There is no self-hosted version at this time.) - LangChain users get a 90-day free trial for Timescale Vector. - To get started, [signup](https://console.cloud.timescale.com/signup?utm_campaign=vectorlaunch&utm_source=langchain&utm_medium=referral) to Timescale, create a new database and follow this notebook! - See the [installation instructions](https://github.com/timescale/python-vector) for more details on using Timescale Vector in python. ## Environment Setup This template uses Timescale Vector as a vectorstore and requires that `TIMESCALES_SERVICE_URL`. Signup for a 90-day trial [here](https://console.cloud.timescale.com/signup?utm_campaign=vectorlaunch&utm_source=langchain&utm_medium=referral) if you don't yet have an account. To load the sample dataset, set `LOAD_SAMPLE_DATA=1`. To load your own dataset see the section below. Set the `OPENAI_API_KEY` environment variable to access the OpenAI models. ## Usage To use this package, you should first have the LangChain CLI installed: ```shell pip install -U langchain-cli ``` To create a new LangChain project and install this as the only package, you can do: ```shell langchain app new my-app --package rag-timescale-hybrid-search-time ``` If you want to add this to an existing project, you can just run: ```shell langchain app add rag-timescale-hybrid-search-time ``` And add the following code to your `server.py` file: ```python from rag_timescale_hybrid_search.chain import chain as rag_timescale_hybrid_search_chain add_routes(app, rag_timescale_hybrid_search_chain, path="/rag-timescale-hybrid-search") ``` (Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/). If you don't have access, you can skip this section ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY= export LANGCHAIN_PROJECT= # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can access the playground at [http://127.0.0.1:8000/rag-timescale-hybrid-search/playground](http://127.0.0.1:8000/rag-timescale-hybrid-search/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/rag-timescale-hybrid-search") ``` ## Loading your own dataset To load your own dataset you will have to modify the code in the `DATASET SPECIFIC CODE` section of `chain.py`. This code defines the name of the collection, how to load the data, and the human-language description of both the contents of the collection and all of the metadata. The human-language descriptions are used by the self-query retriever to help the LLM convert the question into filters on the metadata when searching the data in Timescale-vector.