"""Implements Program-Aided Language Models. This module implements the Program-Aided Language Models (PAL) for generating code solutions. PAL is a technique described in the paper "Program-Aided Language Models" (https://arxiv.org/pdf/2211.10435.pdf). """ from __future__ import annotations import ast from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.schema.language_model import BaseLanguageModel from langchain.utilities import PythonREPL from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT from langchain_experimental.pydantic_v1 import Extra, Field COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"] class PALValidation: SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name def __init__( self, solution_expression_name: Optional[str] = None, solution_expression_type: Optional[type] = None, allow_imports: bool = False, allow_command_exec: bool = False, ): """Initialize a PALValidation instance. Args: solution_expression_name (str): Name of the expected solution expression. If passed, solution_expression_type must be passed as well. solution_expression_type (str): AST type of the expected solution expression. If passed, solution_expression_name must be passed as well. Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE. allow_imports (bool): Allow import statements. allow_command_exec (bool): Allow using known command execution functions. """ self.solution_expression_name = solution_expression_name self.solution_expression_type = solution_expression_type if solution_expression_name is not None: if not isinstance(self.solution_expression_name, str): raise ValueError( f"Expected solution_expression_name to be str, " f"instead found {type(self.solution_expression_name)}" ) if solution_expression_type is not None: if ( self.solution_expression_type is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION and self.solution_expression_type is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE ): raise ValueError( f"Expected solution_expression_type to be one of " f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION}," f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE})," f"instead found {self.solution_expression_type}" ) if solution_expression_name is not None and solution_expression_type is None: raise TypeError( "solution_expression_name " "requires solution_expression_type to be passed as well" ) if solution_expression_name is None and solution_expression_type is not None: raise TypeError( "solution_expression_type " "requires solution_expression_name to be passed as well" ) self.allow_imports = allow_imports self.allow_command_exec = allow_command_exec class PALChain(Chain): """Implements Program-Aided Language Models (PAL). This class implements the Program-Aided Language Models (PAL) for generating code solutions. PAL is a technique described in the paper "Program-Aided Language Models" (https://arxiv.org/pdf/2211.10435.pdf). *Security note*: This class implements an AI technique that generates and evaluates Python code, which can be dangerous and requires a specially sandboxed environment to be safely used. While this class implements some basic guardrails by limiting available locals/globals and by parsing and inspecting the generated Python AST using `PALValidation`, those guardrails will not deter sophisticated attackers and are not a replacement for a proper sandbox. Do not use this class on untrusted inputs, with elevated permissions, or without consulting your security team about proper sandboxing! """ llm_chain: LLMChain stop: str = "\n\n" """Stop token to use when generating code.""" get_answer_expr: str = "print(solution())" """Expression to use to get the answer from the generated code.""" python_globals: Optional[Dict[str, Any]] = None """Python globals and locals to use when executing the generated code.""" python_locals: Optional[Dict[str, Any]] = None """Python globals and locals to use when executing the generated code.""" output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False """Whether to return intermediate steps in the generated code.""" code_validations: PALValidation = Field(default_factory=PALValidation) """Validations to perform on the generated code.""" timeout: Optional[int] = 10 """Timeout in seconds for the generated code to execute.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return self.llm_chain.prompt.input_variables @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() code = self.llm_chain.predict( stop=[self.stop], callbacks=_run_manager.get_child(), **inputs ) _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose) PALChain.validate_code(code, self.code_validations) repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals) res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout) output = {self.output_key: res.strip()} if self.return_intermediate_steps: output["intermediate_steps"] = code return output @classmethod def validate_code(cls, code: str, code_validations: PALValidation) -> None: try: code_tree = ast.parse(code) except (SyntaxError, UnicodeDecodeError): raise ValueError(f"Generated code is not valid python code: {code}") except TypeError: raise ValueError( f"Generated code is expected to be a string, " f"instead found {type(code)}" ) except OverflowError: raise ValueError( f"Generated code too long / complex to be parsed by ast: {code}" ) found_solution_expr = False if code_validations.solution_expression_name is None: # Skip validation if no solution_expression_name was given found_solution_expr = True has_imports = False top_level_nodes = list(ast.iter_child_nodes(code_tree)) for node in top_level_nodes: if ( code_validations.solution_expression_name is not None and code_validations.solution_expression_type is not None ): # Check root nodes (like func def) if ( isinstance(node, code_validations.solution_expression_type) and hasattr(node, "name") and node.name == code_validations.solution_expression_name ): found_solution_expr = True # Check assigned nodes (like answer variable) if isinstance(node, ast.Assign): for target_node in node.targets: if ( isinstance( target_node, code_validations.solution_expression_type ) and hasattr(target_node, "id") and target_node.id == code_validations.solution_expression_name ): found_solution_expr = True if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom): has_imports = True if not found_solution_expr: raise ValueError( f"Generated code is missing the solution expression: " f"{code_validations.solution_expression_name} of type: " f"{code_validations.solution_expression_type}" ) if not code_validations.allow_imports and has_imports: raise ValueError(f"Generated code has disallowed imports: {code}") if ( not code_validations.allow_command_exec or not code_validations.allow_imports ): for node in ast.walk(code_tree): if ( (not code_validations.allow_command_exec) and isinstance(node, ast.Call) and ( ( hasattr(node.func, "id") and node.func.id in COMMAND_EXECUTION_FUNCTIONS ) or ( isinstance(node.func, ast.Attribute) and node.func.attr in COMMAND_EXECUTION_FUNCTIONS ) ) ): raise ValueError( f"Found illegal command execution function " f"{node.func.id} in code {code}" ) if (not code_validations.allow_imports) and ( isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom) ): raise ValueError(f"Generated code has disallowed imports: {code}") @classmethod def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: """Load PAL from math prompt. Args: llm (BaseLanguageModel): The language model to use for generating code. Returns: PALChain: An instance of PALChain. """ llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT) code_validations = PALValidation( solution_expression_name="solution", solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, ) return cls( llm_chain=llm_chain, stop="\n\n", get_answer_expr="print(solution())", code_validations=code_validations, **kwargs, ) @classmethod def from_colored_object_prompt( cls, llm: BaseLanguageModel, **kwargs: Any ) -> PALChain: """Load PAL from colored object prompt. Args: llm (BaseLanguageModel): The language model to use for generating code. Returns: PALChain: An instance of PALChain. """ llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT) code_validations = PALValidation( solution_expression_name="answer", solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE, ) return cls( llm_chain=llm_chain, stop="\n\n\n", get_answer_expr="print(answer)", code_validations=code_validations, **kwargs, ) @property def _chain_type(self) -> str: return "pal_chain"