"""Test PGVector functionality.""" import os from typing import List from langchain.docstore.document import Document from langchain.vectorstores.analyticdb import AnalyticDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings CONNECTION_STRING = AnalyticDB.connection_string_from_db_params( driver=os.environ.get("PG_DRIVER", "psycopg2cffi"), host=os.environ.get("PG_HOST", "localhost"), port=int(os.environ.get("PG_PORT", "5432")), database=os.environ.get("PG_DATABASE", "postgres"), user=os.environ.get("PG_USER", "postgres"), password=os.environ.get("PG_PASSWORD", "postgres"), ) ADA_TOKEN_COUNT = 1536 class FakeEmbeddingsWithAdaDimension(FakeEmbeddings): """Fake embeddings functionality for testing.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return simple embeddings.""" return [ [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts)) ] def embed_query(self, text: str) -> List[float]: """Return simple embeddings.""" return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)] def test_analyticdb() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_analyticdb_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_analyticdb_with_metadatas_with_scores() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_analyticdb_with_filter_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"}) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_analyticdb_with_filter_distant_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"}) print(output) assert output == [(Document(page_content="baz", metadata={"page": "2"}), 4.0)] def test_analyticdb_with_filter_no_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AnalyticDB.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, connection_string=CONNECTION_STRING, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"}) assert output == []