{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Azure Container Apps dynamic sessions\n", "\n", "Azure Container Apps dynamic sessions provides a secure and scalable way to run a Python code interpreter in Hyper-V isolated sandboxes. This allows your agents to run potentially untrusted code in a secure environment. The code interpreter environment includes many popular Python packages, such as NumPy, pandas, and scikit-learn.\n", "\n", "## Pre-requisites\n", "\n", "By default, the `SessionsPythonREPLTool` tool uses `DefaultAzureCredential` to authenticate with Azure. Locally, it'll use your credentials from the Azure CLI or VS Code. Install the Azure CLI and log in with `az login` to authenticate.\n", "\n", "## Using the tool\n", "\n", "Set variables:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import dotenv\n", "dotenv.load_dotenv()\n", "\n", "POOL_MANAGEMENT_ENDPOINT = os.getenv(\"POOL_MANAGEMENT_ENDPOINT\")\n", "AZURE_OPENAI_ENDPOINT = os.getenv(\"AZURE_OPENAI_ENDPOINT\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'{\\n \"result\": 42,\\n \"stdout\": \"\",\\n \"stderr\": \"\"\\n}'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_azure_dynamic_sessions import SessionsPythonREPLTool\n", "\n", "\n", "tool = SessionsPythonREPLTool(pool_management_endpoint=POOL_MANAGEMENT_ENDPOINT)\n", "tool.run(\"6 * 7\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Full agent example" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3mI need to calculate the compound interest on the initial amount over 6 years.\n", "Action: Python_REPL\n", "Action Input: \n", "```python\n", "initial_amount = 500\n", "interest_rate = 0.05\n", "time_period = 6\n", "final_amount = initial_amount * (1 + interest_rate)**time_period\n", "final_amount\n", "```\u001b[0m\u001b[36;1m\u001b[1;3m{\n", " \"result\": 670.0478203125002,\n", " \"stdout\": \"\",\n", " \"stderr\": \"\"\n", "}\u001b[0m\u001b[32;1m\u001b[1;3mThe final amount after 6 years will be $670.05\n", "Final Answer: $670.05\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "{'input': 'If I put $500 in a bank account with a 5% interest rate, how much money will I have in the account after 6 years?',\n", " 'output': '$670.05'}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "from azure.identity import DefaultAzureCredential\n", "from langchain_azure_dynamic_sessions import SessionsPythonREPLTool\n", "from langchain_openai import AzureChatOpenAI\n", "from langchain import agents, hub\n", "\n", "\n", "credential = DefaultAzureCredential()\n", "os.environ[\"OPENAI_API_TYPE\"] = \"azure_ad\"\n", "os.environ[\"OPENAI_API_KEY\"] = credential.get_token(\"https://cognitiveservices.azure.com/.default\").token\n", "os.environ[\"AZURE_OPENAI_ENDPOINT\"] = AZURE_OPENAI_ENDPOINT\n", "\n", "llm = AzureChatOpenAI(\n", " azure_deployment=\"gpt-35-turbo\",\n", " openai_api_version=\"2023-09-15-preview\",\n", " streaming=True,\n", " temperature=0,\n", ")\n", "\n", "repl = SessionsPythonREPLTool(\n", " pool_management_endpoint=POOL_MANAGEMENT_ENDPOINT,\n", ")\n", "\n", "tools = [repl]\n", "react_agent = agents.create_react_agent(\n", " llm=llm,\n", " tools=tools,\n", " prompt=hub.pull(\"hwchase17/react\"),\n", ")\n", "\n", "react_agent_executor = agents.AgentExecutor(agent=react_agent, tools=tools, verbose=True, handle_parsing_errors=True)\n", "\n", "react_agent_executor.invoke({\"input\": \"If I put $500 in a bank account with a 5% interest rate, how much money will I have in the account after 6 years?\"})" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 1 }