"""Test GradientAI API wrapper. In order to run this test, you need to have an GradientAI api key. You can get it by registering for free at https://gradient.ai/. You'll then need to set: - `GRADIENT_ACCESS_TOKEN` environment variable to your api key. - `GRADIENT_WORKSPACE_ID` environment variable to your workspace id. - `GRADIENT_MODEL` environment variable to your workspace id. """ import os from langchain_community.llms import GradientLLM def test_gradient_acall() -> None: """Test simple call to gradient.ai.""" model = os.environ["GRADIENT_MODEL"] gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"] gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"] llm = GradientLLM( model=model, gradient_access_token=gradient_access_token, gradient_workspace_id=gradient_workspace_id, ) output = llm.invoke("Say hello:", temperature=0.2, max_tokens=250) assert llm._llm_type == "gradient" assert isinstance(output, str) assert len(output) async def test_gradientai_acall() -> None: """Test async call to gradient.ai.""" model = os.environ["GRADIENT_MODEL"] gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"] gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"] llm = GradientLLM( model=model, gradient_access_token=gradient_access_token, gradient_workspace_id=gradient_workspace_id, ) output = await llm.agenerate(["Say hello:"], temperature=0.2, max_tokens=250) assert llm._llm_type == "gradient" assert isinstance(output, str) assert len(output)