{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Xorbits inference (Xinference)\n", "\n", "This notebook goes over how to use Xinference embeddings within LangChain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Installation\n", "\n", "Install `Xinference` through PyPI:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install \"xinference[all]\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deploy Xinference Locally or in a Distributed Cluster.\n", "\n", "For local deployment, run `xinference`. \n", "\n", "To deploy Xinference in a cluster, first start an Xinference supervisor using the `xinference-supervisor`. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.\n", "\n", "Then, start the Xinference workers using `xinference-worker` on each server you want to run them on. \n", "\n", "You can consult the README file from [Xinference](https://github.com/xorbitsai/inference) for more information.\n", "\n", "## Wrapper\n", "\n", "To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model uid: 915845ee-2a04-11ee-8ed4-d29396a3f064\n" ] } ], "source": [ "!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A model UID is returned for you to use. Now you can use Xinference embeddings with LangChain:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import XinferenceEmbeddings\n", "\n", "xinference = XinferenceEmbeddings(\n", " server_url=\"http://0.0.0.0:9997\",\n", " model_uid = \"915845ee-2a04-11ee-8ed4-d29396a3f064\"\n", ")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "query_result = xinference.embed_query(\"This is a test query\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "doc_result = xinference.embed_documents([\"text A\", \"text B\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lastly, terminate the model when you do not need to use it:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "!xinference terminate --model-uid \"915845ee-2a04-11ee-8ed4-d29396a3f064\"" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }