{ "cells": [ { "cell_type": "markdown", "id": "719619d3", "metadata": {}, "source": [ "# BGE Hugging Face Embeddings\n", "\n", "This notebook shows how to use BGE Embeddings through Hugging Face" ] }, { "cell_type": "code", "execution_count": 8, "id": "f7a54279", "metadata": { "scrolled": true }, "outputs": [], "source": [ "# !pip install sentence_transformers" ] }, { "cell_type": "code", "execution_count": 5, "id": "9e1d5b6b", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import HuggingFaceBgeEmbeddings\n", "\n", "model_name = \"BAAI/bge-small-en\"\n", "model_kwargs = {'device': 'cpu'}\n", "encode_kwargs = {'normalize_embeddings': False}\n", "hf = HuggingFaceBgeEmbeddings(\n", " model_name=model_name,\n", " model_kwargs=model_kwargs,\n", " encode_kwargs=encode_kwargs\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "id": "e59d1a89", "metadata": {}, "outputs": [], "source": [ "embedding = hf.embed_query(\"hi this is harrison\")" ] }, { "cell_type": "code", "execution_count": null, "id": "e596315f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.1" } }, "nbformat": 4, "nbformat_minor": 5 }