{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "9597802c", "metadata": {}, "source": [ "# Nebula\n", "\n", "[Nebula](https://symbl.ai/nebula/) is a fully-managed Conversation platform, on which you can build, deploy, and manage scalable AI applications.\n", "\n", "This example goes over how to use LangChain to interact with the [Nebula platform](https://docs.symbl.ai/docs/nebula-llm-overview). \n", "\n", "It will send the requests to Nebula Service endpoint, which concatenates `SYMBLAI_NEBULA_SERVICE_URL` and `SYMBLAI_NEBULA_SERVICE_PATH`, with a token defined in `SYMBLAI_NEBULA_SERVICE_TOKEN`" ] }, { "cell_type": "markdown", "id": "f15ebe0d", "metadata": {}, "source": [ "### Integrate with a LLMChain" ] }, { "cell_type": "code", "execution_count": null, "id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2", "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"NEBULA_SERVICE_URL\"] = NEBULA_SERVICE_URL\n", "os.environ[\"NEBULA_SERVICE_PATH\"] = NEBULA_SERVICE_PATH\n", "os.environ[\"NEBULA_SERVICE_API_KEY\"] = NEBULA_SERVICE_API_KEY" ] }, { "cell_type": "code", "execution_count": null, "id": "6fb585dd", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms import OpenLLM\n", "\n", "llm = OpenLLM(\n", " conversation=\"\",\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "035dea0f", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain import PromptTemplate, LLMChain\n", "\n", "template = \"Identify the {count} main objectives or goals mentioned in this context concisely in less points. Emphasize on key intents.\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"count\"])\n", "\n", "llm_chain = LLMChain(prompt=prompt, llm=llm)\n", "\n", "generated = llm_chain.run(count=\"five\")\n", "print(generated)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "vscode": { "interpreter": { "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03" } } }, "nbformat": 4, "nbformat_minor": 5 }