{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "33205b12", "metadata": {}, "source": [ "# Figma\n", "\n", "This notebook covers how to load data from the Figma REST API into a format that can be ingested into LangChain, along with example usage for code generation." ] }, { "cell_type": "code", "execution_count": null, "id": "90b69c94", "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "\n", "from langchain.document_loaders.figma import FigmaFileLoader\n", "\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.chat_models import ChatOpenAI\n", "from langchain.indexes import VectorstoreIndexCreator\n", "from langchain.chains import ConversationChain, LLMChain\n", "from langchain.memory import ConversationBufferWindowMemory\n", "from langchain.prompts.chat import (\n", " ChatPromptTemplate,\n", " SystemMessagePromptTemplate,\n", " AIMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "d809744a", "metadata": {}, "source": [ "The Figma API Requires an access token, node_ids, and a file key.\n", "\n", "The file key can be pulled from the URL. https://www.figma.com/file/{filekey}/sampleFilename\n", "\n", "Node IDs are also available in the URL. Click on anything and look for the '?node-id={node_id}' param.\n", "\n", "Access token instructions are in the Figma help center article: https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens" ] }, { "cell_type": "code", "execution_count": 2, "id": "13deb0f5", "metadata": {}, "outputs": [], "source": [ "figma_loader = FigmaFileLoader(\n", " os.environ.get('ACCESS_TOKEN'),\n", " os.environ.get('NODE_IDS'),\n", " os.environ.get('FILE_KEY')\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "9ccc1e2f", "metadata": {}, "outputs": [], "source": [ "# see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details\n", "index = VectorstoreIndexCreator().from_loaders([figma_loader])\n", "figma_doc_retriever = index.vectorstore.as_retriever()" ] }, { "cell_type": "code", "execution_count": null, "id": "3e64cac2", "metadata": {}, "outputs": [], "source": [ "def generate_code(human_input):\n", " # I have no idea if the Jon Carmack thing makes for better code. YMMV.\n", " # See https://python.langchain.com/en/latest/modules/models/chat/getting_started.html for chat info\n", " system_prompt_template = \"\"\"You are expert coder Jon Carmack. Use the provided design context to create idomatic HTML/CSS code as possible based on the user request.\n", " Everything must be inline in one file and your response must be directly renderable by the browser.\n", " Figma file nodes and metadata: {context}\"\"\"\n", "\n", " human_prompt_template = \"Code the {text}. Ensure it's mobile responsive\"\n", " system_message_prompt = SystemMessagePromptTemplate.from_template(system_prompt_template)\n", " human_message_prompt = HumanMessagePromptTemplate.from_template(human_prompt_template)\n", " # delete the gpt-4 model_name to use the default gpt-3.5 turbo for faster results\n", " gpt_4 = ChatOpenAI(temperature=.02, model_name='gpt-4')\n", " # Use the retriever's 'get_relevant_documents' method if needed to filter down longer docs\n", " relevant_nodes = figma_doc_retriever.get_relevant_documents(human_input)\n", " conversation = [system_message_prompt, human_message_prompt]\n", " chat_prompt = ChatPromptTemplate.from_messages(conversation)\n", " response = gpt_4(chat_prompt.format_prompt( \n", " context=relevant_nodes, \n", " text=human_input).to_messages())\n", " return response" ] }, { "cell_type": "code", "execution_count": null, "id": "36a96114", "metadata": {}, "outputs": [], "source": [ "response = generate_code(\"page top header\")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "baf9b2c9", "metadata": {}, "source": [ "Returns the following in `response.content`:\n", "```\n", "\\n\\n
\\n \\n \\n \\n\\n\\n