import os from langchain.prompts import ChatPromptTemplate from langchain.vectorstores import MomentoVectorIndex from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_core.output_parsers import StrOutputParser from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnablePassthrough from momento import ( CredentialProvider, PreviewVectorIndexClient, VectorIndexConfigurations, ) API_KEY_ENV_VAR_NAME = "MOMENTO_API_KEY" if os.environ.get(API_KEY_ENV_VAR_NAME, None) is None: raise Exception(f"Missing `{API_KEY_ENV_VAR_NAME}` environment variable.") MOMENTO_INDEX_NAME = os.environ.get("MOMENTO_INDEX_NAME", "langchain-test") ### Sample Ingest Code - this populates the vector index with data ### Run this on the first time to seed with data # from rag_momento_vector_index import ingest # ingest.load(API_KEY_ENV_VAR_NAME, MOMENTO_INDEX_NAME) vectorstore = MomentoVectorIndex( embedding=OpenAIEmbeddings(), client=PreviewVectorIndexClient( configuration=VectorIndexConfigurations.Default.latest(), credential_provider=CredentialProvider.from_environment_variable( API_KEY_ENV_VAR_NAME ), ), index_name=MOMENTO_INDEX_NAME, ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)