import csv from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from langchain.vectorstores import Chroma from langchain_community.embeddings import CohereEmbeddings from .chat import chat csv_file = open("data/books_with_blurbs.csv", "r") csv_reader = csv.reader(csv_file) csv_data = list(csv_reader) parsed_data = [ { "id": x[0], "title": x[1], "author": x[2], "year": x[3], "publisher": x[4], "blurb": x[5], } for x in csv_data ] parsed_data[1] embeddings = CohereEmbeddings() docsearch = Chroma.from_texts( [x["title"] for x in parsed_data], embeddings, metadatas=parsed_data ).as_retriever() prompt_template = """ {context} Use the book reccommendations to suggest books for the user to read. Only use the titles of the books, do not make up titles. Format the response as a bulleted list prefixed by a relevant message. User: {message}""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "message"] ) book_rec_chain = { "input_documents": lambda x: docsearch.get_relevant_documents(x["message"]), "message": lambda x: x["message"], } | load_qa_chain(chat, chain_type="stuff", prompt=PROMPT)