{ "cells": [ { "cell_type": "markdown", "id": "707d13a7", "metadata": {}, "source": [ "# Databricks\n", "\n", "This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n", "It is broken into 3 parts: installation and setup, connecting to Databricks, and examples." ] }, { "cell_type": "markdown", "id": "0076d072", "metadata": {}, "source": [ "## Installation and Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "739b489b", "metadata": {}, "outputs": [], "source": [ "!pip install databricks-sql-connector" ] }, { "cell_type": "markdown", "id": "73113163", "metadata": {}, "source": [ "## Connecting to Databricks\n", "\n", "You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n", "\n", "### Syntax\n", "```python\n", "SQLDatabase.from_databricks(\n", " catalog: str,\n", " schema: str,\n", " host: Optional[str] = None,\n", " api_token: Optional[str] = None,\n", " warehouse_id: Optional[str] = None,\n", " cluster_id: Optional[str] = None,\n", " engine_args: Optional[dict] = None,\n", " **kwargs: Any)\n", "```\n", "### Required Parameters\n", "* `catalog`: The catalog name in the Databricks database.\n", "* `schema`: The schema name in the catalog.\n", "\n", "### Optional Parameters\n", "There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n", "* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n", "* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n", "* `warehouse_id`: The warehouse ID in the Databricks SQL.\n", "* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n", "* `engine_args`: The arguments to be used when connecting Databricks.\n", "* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method." ] }, { "cell_type": "markdown", "id": "b11c7e48", "metadata": {}, "source": [ "## Examples" ] }, { "cell_type": "code", "execution_count": 2, "id": "8102bca0", "metadata": {}, "outputs": [], "source": [ "# Connecting to Databricks with SQLDatabase wrapper\n", "from langchain.utilities import SQLDatabase\n", "\n", "db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "9dd36f58", "metadata": {}, "outputs": [], "source": [ "# Creating a OpenAI Chat LLM wrapper\n", "from langchain_community.chat_models import ChatOpenAI\n", "\n", "llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")" ] }, { "cell_type": "markdown", "id": "5b5c5f1a", "metadata": {}, "source": [ "### SQL Chain example\n", "\n", "This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database." ] }, { "cell_type": "code", "execution_count": 4, "id": "36f2270b", "metadata": {}, "outputs": [], "source": [ "from langchain.utilities import SQLDatabaseChain\n", "\n", "db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)" ] }, { "cell_type": "code", "execution_count": 5, "id": "4e2b5f25", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n", "What is the average duration of taxi rides that start between midnight and 6am?\n", "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n", "FROM trips\n", "WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n", "SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n", "Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "db_chain.run(\n", " \"What is the average duration of taxi rides that start between midnight and 6am?\"\n", ")" ] }, { "cell_type": "markdown", "id": "e496d5e5", "metadata": {}, "source": [ "### SQL Database Agent example\n", "\n", "This example demonstrates the use of the [SQL Database Agent](/docs/integrations/toolkits/sql_database.html) for answering questions over a Databricks database." ] }, { "cell_type": "code", "execution_count": 7, "id": "9918e86a", "metadata": {}, "outputs": [], "source": [ "from langchain.agents import create_sql_agent\n", "from langchain.agents.agent_toolkits import SQLDatabaseToolkit\n", "\n", "toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n", "agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)" ] }, { "cell_type": "code", "execution_count": 8, "id": "c484a76e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n", "Action Input: \u001b[0m\n", "Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n", "Action: schema_sql_db\n", "Action Input: trips\u001b[0m\n", "Observation: \u001b[33;1m\u001b[1;3m\n", "CREATE TABLE trips (\n", "\ttpep_pickup_datetime TIMESTAMP, \n", "\ttpep_dropoff_datetime TIMESTAMP, \n", "\ttrip_distance FLOAT, \n", "\tfare_amount FLOAT, \n", "\tpickup_zip INT, \n", "\tdropoff_zip INT\n", ") USING DELTA\n", "\n", "/*\n", "3 rows from trips table:\n", "tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n", "2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n", "2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n", "2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n", "*/\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n", "Action: query_checker_sql_db\n", "Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n", "Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n", "Action: query_sql_db\n", "Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n", "Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agent.run(\"What is the longest trip distance and how long did it take?\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 5 }