from __future__ import annotations import asyncio import functools import logging from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Mapping, Optional, Union, ) from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain_core.outputs import ( ChatGeneration, ChatGenerationChunk, ChatResult, ) from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain_community.llms.tongyi import check_response logger = logging.getLogger(__name__) def convert_dict_to_message( _dict: Mapping[str, Any], is_chunk: bool = False ) -> Union[BaseMessage, BaseMessageChunk]: role = _dict["role"] content = _dict["content"] if role == "user": return ( HumanMessageChunk(content=content) if is_chunk else HumanMessage(content=content) ) elif role == "assistant": return ( AIMessageChunk(content=content) if is_chunk else AIMessage(content=content) ) elif role == "system": return ( SystemMessageChunk(content=content) if is_chunk else SystemMessage(content=content) ) else: return ( ChatMessageChunk(role=role, content=content) if is_chunk else ChatMessage(role=role, content=content) ) def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage: if isinstance(message_chunk, HumanMessageChunk): return HumanMessage(content=message_chunk.content) elif isinstance(message_chunk, AIMessageChunk): return AIMessage(content=message_chunk.content) elif isinstance(message_chunk, SystemMessageChunk): return SystemMessage(content=message_chunk.content) elif isinstance(message_chunk, ChatMessageChunk): return ChatMessage(role=message_chunk.role, content=message_chunk.content) else: raise TypeError(f"Got unknown type {message_chunk}") def convert_message_to_dict(message: BaseMessage) -> dict: """Convert a message to a dict.""" message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise TypeError(f"Got unknown type {message}") return message_dict def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]: min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterward return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=before_sleep_log(logger, logging.WARNING), ) class ChatTongyi(BaseChatModel): """Alibaba Tongyi Qwen chat models API. To use, you should have the ``dashscope`` python package installed, and set env ``DASHSCOPE_API_KEY`` with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.chat_models import Tongyi Tongyi_chat = ChatTongyi() """ @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} client: Any #: :meta private: model_name: str = Field(default="qwen-turbo", alias="model") """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[SecretStr] = None """Dashscope api key provide by Alibaba Cloud.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["dashscope_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY") ) try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope --upgrade`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Tongyi Qwen API.""" return { "model": self.model_name, "top_p": self.top_p, "api_key": self.dashscope_api_key.get_secret_value(), "result_format": "message", **self.model_kwargs, } def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self) @retry_decorator def _completion_with_retry(**_kwargs: Any) -> Any: resp = self.client.call(**_kwargs) return check_response(resp) return _completion_with_retry(**kwargs) def stream_completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self) @retry_decorator def _stream_completion_with_retry(**_kwargs: Any) -> Any: responses = self.client.call(**_kwargs) for resp in responses: yield check_response(resp) return _stream_completion_with_retry(**kwargs) async def astream_completion_with_retry(self, **kwargs: Any) -> Any: """Because the dashscope SDK doesn't provide an async API, we wrap `stream_generate_with_retry` with an async generator.""" class _AioTongyiGenerator: def __init__(self, generator: Any): self.generator = generator def __aiter__(self) -> AsyncIterator[Any]: return self async def __anext__(self) -> Any: value = await asyncio.get_running_loop().run_in_executor( None, self._safe_next ) if value is not None: return value else: raise StopAsyncIteration def _safe_next(self) -> Any: try: return next(self.generator) except StopIteration: return None async for chunk in _AioTongyiGenerator( generator=self.stream_completion_with_retry(**kwargs) ): yield chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: generations = [] if self.streaming: generation: Optional[ChatGenerationChunk] = None for chunk in self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append(self._chunk_to_generation(generation)) else: params: Dict[str, Any] = self._invocation_params( messages=messages, stop=stop, **kwargs ) resp = self.completion_with_retry(**params) generations.append( ChatGeneration(**self._chat_generation_from_qwen_resp(resp)) ) return ChatResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: generations = [] if self.streaming: generation: Optional[ChatGenerationChunk] = None async for chunk in self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append(self._chunk_to_generation(generation)) else: params: Dict[str, Any] = self._invocation_params( messages=messages, stop=stop, **kwargs ) resp = await asyncio.get_running_loop().run_in_executor( None, functools.partial( self.completion_with_retry, **{"run_manager": run_manager, **params} ), ) generations.append( ChatGeneration(**self._chat_generation_from_qwen_resp(resp)) ) return ChatResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: params: Dict[str, Any] = self._invocation_params( messages=messages, stop=stop, stream=True, **kwargs ) for stream_resp in self.stream_completion_with_retry(**params): chunk = ChatGenerationChunk( **self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True) ) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: params: Dict[str, Any] = self._invocation_params( messages=messages, stop=stop, stream=True, **kwargs ) async for stream_resp in self.astream_completion_with_retry(**params): chunk = ChatGenerationChunk( **self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True) ) yield chunk if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) def _invocation_params( self, messages: List[BaseMessage], stop: Any, **kwargs: Any ) -> Dict[str, Any]: params = {**self._default_params, **kwargs} if stop is not None: params["stop"] = stop if params.get("stream"): params["incremental_output"] = True message_dicts = [convert_message_to_dict(m) for m in messages] # According to the docs, the last message should be a `user` message if message_dicts[-1]["role"] != "user": raise ValueError("Last message should be user message.") # And the `system` message should be the first message if present system_message_indices = [ i for i, m in enumerate(message_dicts) if m["role"] == "system" ] if len(system_message_indices) == 1 and system_message_indices[0] != 0: raise ValueError("System message can only be the first message.") elif len(system_message_indices) > 1: raise ValueError("There can be only one system message at most.") params["messages"] = message_dicts return params def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if llm_outputs[0] is None: return {} return llm_outputs[0] @staticmethod def _chat_generation_from_qwen_resp( resp: Any, is_chunk: bool = False ) -> Dict[str, Any]: choice = resp["output"]["choices"][0] message = convert_dict_to_message(choice["message"], is_chunk=is_chunk) return dict( message=message, generation_info=dict( finish_reason=choice["finish_reason"], request_id=resp["request_id"], token_usage=dict(resp["usage"]), ), ) @staticmethod def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration: return ChatGeneration( message=convert_message_chunk_to_message(chunk.message), generation_info=chunk.generation_info, )