import os from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.vectorstores import SingleStoreDB from langchain_core.output_parsers import StrOutputParser from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough if os.environ.get("SINGLESTOREDB_URL", None) is None: raise Exception("Missing `SINGLESTOREDB_URL` environment variable.") # SINGLESTOREDB_URL takes the form of: "admin:password@host:port/db_name" ## Ingest code - you may need to run this the first time # # Load # from langchain.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain.text_splitter import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = SingleStoreDB.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings() # ) # retriever = vectorstore.as_retriever() vectorstore = SingleStoreDB(embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)