"""Test OpenAI API wrapper.""" from pathlib import Path from typing import Generator import pytest from langchain_core.callbacks import CallbackManager from langchain_core.outputs import LLMResult from langchain_community.chat_models.openai import ChatOpenAI from langchain_community.llms.loading import load_llm from langchain_community.llms.openai import OpenAI from tests.unit_tests.callbacks.fake_callback_handler import ( FakeCallbackHandler, ) @pytest.mark.scheduled def test_openai_call() -> None: """Test valid call to openai.""" llm = OpenAI() output = llm("Say something nice:") assert isinstance(output, str) def test_openai_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" llm = OpenAI(max_tokens=10) llm_result = llm.generate(["Hello, how are you?"]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == llm.model_name def test_openai_stop_valid() -> None: """Test openai stop logic on valid configuration.""" query = "write an ordered list of five items" first_llm = OpenAI(stop="3", temperature=0) first_output = first_llm(query) second_llm = OpenAI(temperature=0) second_output = second_llm(query, stop=["3"]) # Because it stops on new lines, shouldn't return anything assert first_output == second_output def test_openai_stop_error() -> None: """Test openai stop logic on bad configuration.""" llm = OpenAI(stop="3", temperature=0) with pytest.raises(ValueError): llm("write an ordered list of five items", stop=["\n"]) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an OpenAI LLM.""" llm = OpenAI(max_tokens=10) llm.save(file_path=tmp_path / "openai.yaml") loaded_llm = load_llm(tmp_path / "openai.yaml") assert loaded_llm == llm @pytest.mark.scheduled def test_openai_streaming() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) generator = llm.stream("I'm Pickle Rick") assert isinstance(generator, Generator) for token in generator: assert isinstance(token, str) @pytest.mark.scheduled async def test_openai_astream() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token, str) @pytest.mark.scheduled async def test_openai_abatch() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_openai_abatch_tags() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token, str) @pytest.mark.scheduled def test_openai_batch() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) @pytest.mark.scheduled async def test_openai_ainvoke() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result, str) @pytest.mark.scheduled def test_openai_invoke() -> None: """Test streaming tokens from OpenAI.""" llm = OpenAI(max_tokens=10) result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result, str) @pytest.mark.scheduled def test_openai_multiple_prompts() -> None: """Test completion with multiple prompts.""" llm = OpenAI(max_tokens=10) output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) assert len(output.generations) == 2 def test_openai_streaming_best_of_error() -> None: """Test validation for streaming fails if best_of is not 1.""" with pytest.raises(ValueError): OpenAI(best_of=2, streaming=True) def test_openai_streaming_n_error() -> None: """Test validation for streaming fails if n is not 1.""" with pytest.raises(ValueError): OpenAI(n=2, streaming=True) def test_openai_streaming_multiple_prompts_error() -> None: """Test validation for streaming fails if multiple prompts are given.""" with pytest.raises(ValueError): OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"]) @pytest.mark.scheduled def test_openai_streaming_call() -> None: """Test valid call to openai.""" llm = OpenAI(max_tokens=10, streaming=True) output = llm("Say foo:") assert isinstance(output, str) def test_openai_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) llm("Write me a sentence with 100 words.") assert callback_handler.llm_streams == 10 @pytest.mark.scheduled async def test_openai_async_generate() -> None: """Test async generation.""" llm = OpenAI(max_tokens=10) output = await llm.agenerate(["Hello, how are you?"]) assert isinstance(output, LLMResult) async def test_openai_async_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = OpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) result = await llm.agenerate(["Write me a sentence with 100 words."]) assert callback_handler.llm_streams == 10 assert isinstance(result, LLMResult) def test_openai_modelname_to_contextsize_valid() -> None: """Test model name to context size on a valid model.""" assert OpenAI().modelname_to_contextsize("davinci") == 2049 def test_openai_modelname_to_contextsize_invalid() -> None: """Test model name to context size on an invalid model.""" with pytest.raises(ValueError): OpenAI().modelname_to_contextsize("foobar") _EXPECTED_NUM_TOKENS = { "ada": 17, "babbage": 17, "curie": 17, "davinci": 17, "gpt-4": 12, "gpt-4-32k": 12, "gpt-3.5-turbo": 12, } _MODELS = models = [ "ada", "babbage", "curie", "davinci", ] _CHAT_MODELS = [ "gpt-4", "gpt-4-32k", "gpt-3.5-turbo", ] @pytest.mark.parametrize("model", _MODELS) def test_openai_get_num_tokens(model: str) -> None: """Test get_tokens.""" llm = OpenAI(model=model) assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model] @pytest.mark.parametrize("model", _CHAT_MODELS) def test_chat_openai_get_num_tokens(model: str) -> None: """Test get_tokens.""" llm = ChatOpenAI(model=model) assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model] @pytest.fixture def mock_completion() -> dict: return { "id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ", "object": "text_completion", "created": 1689989000, "model": "gpt-3.5-turbo-instruct", "choices": [ {"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"} ], "usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3}, }