# flake8: noqa """Test llamacpp embeddings.""" import os from urllib.request import urlretrieve from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings def get_model() -> str: """Download model. From https://huggingface.co/Sosaka/Alpaca-native-4bit-ggml/, convert to new ggml format and return model path. """ model_url = "https://huggingface.co/Sosaka/Alpaca-native-4bit-ggml/resolve/main/ggml-alpaca-7b-q4.bin" tokenizer_url = "https://huggingface.co/decapoda-research/llama-7b-hf/resolve/main/tokenizer.model" conversion_script = "https://github.com/ggerganov/llama.cpp/raw/master/convert-unversioned-ggml-to-ggml.py" local_filename = model_url.split("/")[-1] if not os.path.exists("convert-unversioned-ggml-to-ggml.py"): urlretrieve(conversion_script, "convert-unversioned-ggml-to-ggml.py") if not os.path.exists("tokenizer.model"): urlretrieve(tokenizer_url, "tokenizer.model") if not os.path.exists(local_filename): urlretrieve(model_url, local_filename) os.system("python convert-unversioned-ggml-to-ggml.py . tokenizer.model") return local_filename def test_llamacpp_embedding_documents() -> None: """Test llamacpp embeddings.""" documents = ["foo bar"] model_path = get_model() embedding = LlamaCppEmbeddings(model_path=model_path) # type: ignore[call-arg] output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 512 def test_llamacpp_embedding_query() -> None: """Test llamacpp embeddings.""" document = "foo bar" model_path = get_model() embedding = LlamaCppEmbeddings(model_path=model_path) # type: ignore[call-arg] output = embedding.embed_query(document) assert len(output) == 512