import base64 from os.path import exists from typing import Any, Dict, List, Optional from urllib.parse import urlparse import requests from langchain_core.embeddings import Embeddings from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env JINA_API_URL: str = "https://api.jina.ai/v1/embeddings" def is_local(url: str) -> bool: url_parsed = urlparse(url) if url_parsed.scheme in ("file", ""): # Possibly a local file return exists(url_parsed.path) return False def get_bytes_str(file_path: str) -> str: with open(file_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") class JinaEmbeddings(BaseModel, Embeddings): """Jina embedding models.""" session: Any #: :meta private: model_name: str = "jina-embeddings-v2-base-en" jina_api_key: Optional[SecretStr] = None @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that auth token exists in environment.""" try: jina_api_key = convert_to_secret_str( get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY") ) except ValueError as original_exc: try: jina_api_key = convert_to_secret_str( get_from_dict_or_env(values, "jina_auth_token", "JINA_AUTH_TOKEN") ) except ValueError: raise original_exc session = requests.Session() session.headers.update( { "Authorization": f"Bearer {jina_api_key.get_secret_value()}", "Accept-Encoding": "identity", "Content-type": "application/json", } ) values["session"] = session return values def _embed(self, input: Any) -> List[List[float]]: # Call Jina AI Embedding API resp = self.session.post( # type: ignore JINA_API_URL, json={"input": input, "model": self.model_name} ).json() if "data" not in resp: raise RuntimeError(resp["detail"]) embeddings = resp["data"] # Sort resulting embeddings by index sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore # Return just the embeddings return [result["embedding"] for result in sorted_embeddings] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Jina's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ return self._embed(texts) def embed_query(self, text: str) -> List[float]: """Call out to Jina's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed([text])[0] def embed_images(self, uris: List[str]) -> List[List[float]]: """Call out to Jina's image embedding endpoint. Args: uris: The list of uris to embed. Returns: List of embeddings, one for each text. """ input = [] for uri in uris: if is_local(uri): input.append({"bytes": get_bytes_str(uri)}) else: input.append({"url": uri}) return self._embed(input)