{ "cells": [ { "cell_type": "markdown", "id": "e49f1e0d", "metadata": {}, "source": [ "# Getting Started\n", "\n", "This notebook covers how to get started with chat models. The interface is based around messages rather than raw text." ] }, { "cell_type": "code", "execution_count": 1, "id": "522686de", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain import PromptTemplate, LLMChain\n", "from langchain.prompts.chat import (\n", " ChatPromptTemplate,\n", " SystemMessagePromptTemplate,\n", " AIMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")\n", "from langchain.schema import (\n", " AIMessage,\n", " HumanMessage,\n", " SystemMessage\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "id": "62e0dbc3", "metadata": { "tags": [] }, "outputs": [], "source": [ "chat = ChatOpenAI(temperature=0)" ] }, { "cell_type": "markdown", "id": "bbaec18e-3684-4eef-955f-c1cec8bf765d", "metadata": {}, "source": [ "You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`" ] }, { "cell_type": "code", "execution_count": 3, "id": "76a6e7b0-e927-4bfb-a414-1332a4149106", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"J'aime programmer.\", additional_kwargs={})" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat([HumanMessage(content=\"Translate this sentence from English to French. I love programming.\")])" ] }, { "cell_type": "markdown", "id": "a62153d4-1211-411b-a493-3febfe446ae0", "metadata": {}, "source": [ "OpenAI's chat model supports multiple messages as input. See [here](https://platform.openai.com/docs/guides/chat/chat-vs-completions) for more information. Here is an example of sending a system and user message to the chat model:" ] }, { "cell_type": "code", "execution_count": 4, "id": "ce16ad78-8e6f-48cd-954e-98be75eb5836", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"J'aime programmer.\", additional_kwargs={})" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "messages = [\n", " SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n", " HumanMessage(content=\"I love programming.\")\n", "]\n", "chat(messages)" ] }, { "cell_type": "markdown", "id": "36dc8d7e-bd25-47ac-8c1b-60e3422603d3", "metadata": {}, "source": [ "You can go one step further and generate completions for multiple sets of messages using `generate`. This returns an `LLMResult` with an additional `message` parameter." ] }, { "cell_type": "code", "execution_count": 5, "id": "2b21fc52-74b6-4950-ab78-45d12c68fb4d", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "LLMResult(generations=[[ChatGeneration(text=\"J'aime programmer.\", generation_info=None, message=AIMessage(content=\"J'aime programmer.\", additional_kwargs={}))], [ChatGeneration(text=\"J'aime l'intelligence artificielle.\", generation_info=None, message=AIMessage(content=\"J'aime l'intelligence artificielle.\", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "batch_messages = [\n", " [\n", " SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n", " HumanMessage(content=\"I love programming.\")\n", " ],\n", " [\n", " SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n", " HumanMessage(content=\"I love artificial intelligence.\")\n", " ],\n", "]\n", "result = chat.generate(batch_messages)\n", "result" ] }, { "cell_type": "markdown", "id": "2960f50f", "metadata": {}, "source": [ "You can recover things like token usage from this LLMResult" ] }, { "cell_type": "code", "execution_count": 6, "id": "a6186bee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'token_usage': {'prompt_tokens': 57,\n", " 'completion_tokens': 20,\n", " 'total_tokens': 77}}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.llm_output" ] }, { "cell_type": "markdown", "id": "b10b00ef-f373-4bc3-8302-2dfc28033734", "metadata": {}, "source": [ "## PromptTemplates" ] }, { "cell_type": "markdown", "id": "778f912a-66ea-4a5d-b3de-6c7db4baba26", "metadata": {}, "source": [ "You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n", "\n", "For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:" ] }, { "cell_type": "code", "execution_count": 7, "id": "180c5cc8", "metadata": {}, "outputs": [], "source": [ "template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n", "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n", "human_template=\"{text}\"\n", "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)" ] }, { "cell_type": "code", "execution_count": 8, "id": "fbb043e6", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"J'adore la programmation.\", additional_kwargs={})" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n", "\n", "# get a chat completion from the formatted messages\n", "chat(chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages())" ] }, { "cell_type": "markdown", "id": "e28b98da", "metadata": {}, "source": [ "If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:" ] }, { "cell_type": "code", "execution_count": 9, "id": "d5b1ab1c", "metadata": {}, "outputs": [], "source": [ "prompt=PromptTemplate(\n", " template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", " input_variables=[\"input_language\", \"output_language\"],\n", ")\n", "system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)" ] }, { "cell_type": "markdown", "id": "92af0bba", "metadata": {}, "source": [ "## LLMChain\n", "You can use the existing LLMChain in a very similar way to before - provide a prompt and a model." ] }, { "cell_type": "code", "execution_count": 10, "id": "f2cbfe3d", "metadata": {}, "outputs": [], "source": [ "chain = LLMChain(llm=chat, prompt=chat_prompt)" ] }, { "cell_type": "code", "execution_count": 11, "id": "268543b1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"J'adore la programmation.\"" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chain.run(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")" ] }, { "cell_type": "markdown", "id": "eb779f3f", "metadata": {}, "source": [ "## Streaming\n", "\n", "Streaming is supported for `ChatOpenAI` through callback handling." ] }, { "cell_type": "code", "execution_count": 10, "id": "509181be", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "Verse 1:\n", "Bubbles rising to the top\n", "A refreshing drink that never stops\n", "Clear and crisp, it's pure delight\n", "A taste that's sure to excite\n", "\n", "Chorus:\n", "Sparkling water, oh so fine\n", "A drink that's always on my mind\n", "With every sip, I feel alive\n", "Sparkling water, you're my vibe\n", "\n", "Verse 2:\n", "No sugar, no calories, just pure bliss\n", "A drink that's hard to resist\n", "It's the perfect way to quench my thirst\n", "A drink that always comes first\n", "\n", "Chorus:\n", "Sparkling water, oh so fine\n", "A drink that's always on my mind\n", "With every sip, I feel alive\n", "Sparkling water, you're my vibe\n", "\n", "Bridge:\n", "From the mountains to the sea\n", "Sparkling water, you're the key\n", "To a healthy life, a happy soul\n", "A drink that makes me feel whole\n", "\n", "Chorus:\n", "Sparkling water, oh so fine\n", "A drink that's always on my mind\n", "With every sip, I feel alive\n", "Sparkling water, you're my vibe\n", "\n", "Outro:\n", "Sparkling water, you're the one\n", "A drink that's always so much fun\n", "I'll never let you go, my friend\n", "Sparkling" ] } ], "source": [ "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n", "chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)\n", "resp = chat([HumanMessage(content=\"Write me a song about sparkling water.\")])\n" ] }, { "cell_type": "code", "execution_count": null, "id": "c095285d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }