import os from typing import List, Tuple from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_log_to_messages from langchain.agents.output_parsers import ( ReActJsonSingleInputOutputParser, ) from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.pydantic_v1 import BaseModel, Field from langchain.schema import AIMessage, HumanMessage from langchain.tools.render import render_text_description_and_args from langchain_community.chat_models import ChatOllama from neo4j_semantic_ollama.information_tool import InformationTool from neo4j_semantic_ollama.memory_tool import MemoryTool from neo4j_semantic_ollama.recommendation_tool import RecommenderTool from neo4j_semantic_ollama.smalltalk_tool import SmalltalkTool llm = ChatOllama( model="mixtral", temperature=0, base_url=os.environ["OLLAMA_BASE_URL"], streaming=True, ) chat_model_with_stop = llm.bind(stop=["\nObservation"]) tools = [InformationTool(), RecommenderTool(), MemoryTool(), SmalltalkTool()] # Inspiration taken from hub.pull("hwchase17/react-json") system_message = f"""Answer the following questions as best you can. You can answer directly if the user is greeting you or similar. Otherise, you have access to the following tools: {render_text_description_and_args(tools).replace('{', '{{').replace('}', '}}')} The way you use the tools is by specifying a json blob. Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here). The only values that should be in the "action" field are: {[t.name for t in tools]} The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` The $JSON_BLOB must always be enclosed with triple backticks! ALWAYS use the following format: Question: the input question you must answer Thought: you should always think about what to do Action:``` $JSON_BLOB ``` Observation: the result of the action... (this Thought/Action/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Reminder to always use the exact characters `Final Answer` when responding.' """ prompt = ChatPromptTemplate.from_messages( [ ( "user", system_message, ), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) def _format_chat_history(chat_history: List[Tuple[str, str]]): buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_messages(x["intermediate_steps"]), "chat_history": lambda x: _format_chat_history(x["chat_history"]) if x.get("chat_history") else [], } | prompt | chat_model_with_stop | ReActJsonSingleInputOutputParser() ) # Add typing for input class AgentInput(BaseModel): input: str chat_history: List[Tuple[str, str]] = Field( ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} ) agent_executor = AgentExecutor(agent=agent, tools=tools).with_types( input_type=AgentInput )