{ "cells": [ { "cell_type": "markdown", "id": "1f83f273", "metadata": {}, "source": [ "# SageMaker Endpoint\n", "\n", "Let's load the `SageMaker Endpoints Embeddings` class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker.\n", "\n", "For instructions on how to do this, please see [here](https://www.philschmid.de/custom-inference-huggingface-sagemaker). **Note**: In order to handle batched requests, you will need to adjust the return line in the `predict_fn()` function within the custom `inference.py` script:\n", "\n", "Change from\n", "\n", "`return {\"vectors\": sentence_embeddings[0].tolist()}`\n", "\n", "to:\n", "\n", "`return {\"vectors\": sentence_embeddings.tolist()}`." ] }, { "cell_type": "code", "execution_count": null, "id": "88d366bd", "metadata": {}, "outputs": [], "source": [ "!pip3 install langchain boto3" ] }, { "cell_type": "code", "execution_count": 3, "id": "1e9b926a", "metadata": {}, "outputs": [], "source": [ "from typing import Dict, List\n", "from langchain.embeddings import SagemakerEndpointEmbeddings\n", "from langchain.llms.sagemaker_endpoint import ContentHandlerBase\n", "import json\n", "\n", "\n", "class ContentHandler(ContentHandlerBase):\n", " content_type = \"application/json\"\n", " accepts = \"application/json\"\n", "\n", " def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:\n", " input_str = json.dumps({\"inputs\": inputs, **model_kwargs})\n", " return input_str.encode('utf-8')\n", "\n", " def transform_output(self, output: bytes) -> List[List[float]]:\n", " response_json = json.loads(output.read().decode(\"utf-8\"))\n", " return response_json[\"vectors\"]\n", "\n", "content_handler = ContentHandler()\n", "\n", "\n", "embeddings = SagemakerEndpointEmbeddings(\n", " # endpoint_name=\"endpoint-name\", \n", " # credentials_profile_name=\"credentials-profile-name\", \n", " endpoint_name=\"huggingface-pytorch-inference-2023-03-21-16-14-03-834\", \n", " region_name=\"us-east-1\", \n", " content_handler=content_handler\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "fe9797b8", "metadata": {}, "outputs": [], "source": [ "query_result = embeddings.embed_query(\"foo\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "76f1b752", "metadata": {}, "outputs": [], "source": [ "doc_results = embeddings.embed_documents([\"foo\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "fff99b21", "metadata": {}, "outputs": [], "source": [ "doc_results" ] }, { "cell_type": "code", "execution_count": null, "id": "aaad49f8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885" } } }, "nbformat": 4, "nbformat_minor": 5 }