{ "cells": [ { "cell_type": "markdown", "id": "959300d4", "metadata": {}, "source": [ "# PromptLayer ChatOpenAI\n", "\n", ">[PromptLayer](https://docs.promptlayer.com/what-is-promptlayer/wxpF9EZkUwvdkwvVE9XEvC/how-promptlayer-works/dvgGSxNe6nB1jj8mUVbG8r) \n", "> is a devtool that allows you to track, manage, and share your GPT prompt engineering. \n", "> It acts as a middleware between your code and OpenAI's python library, recording all your API requests \n", "> and saving relevant metadata for easy exploration and search in the [PromptLayer](https://www.promptlayer.com) dashboard." ] }, { "cell_type": "markdown", "id": "6a45943e", "metadata": {}, "source": [ "## Install PromptLayer\n", "The `promptlayer` package is required to use PromptLayer with OpenAI. Install `promptlayer` using pip." ] }, { "cell_type": "code", "execution_count": null, "id": "dbe09bd8", "metadata": { "vscode": { "languageId": "powershell" } }, "outputs": [], "source": [ "pip install promptlayer" ] }, { "cell_type": "markdown", "id": "536c1dfa", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 2, "id": "c16da3b5", "metadata": {}, "outputs": [], "source": [ "import os\n", "from langchain.chat_models import PromptLayerChatOpenAI\n", "from langchain.schema import HumanMessage" ] }, { "cell_type": "markdown", "id": "8564ce7d", "metadata": {}, "source": [ "## Set the Environment API Key\n", "You can create a PromptLayer API Key at [www.promptlayer.com](https://www.promptlayer.com) by clicking the settings cog in the navbar.\n", "\n", "Set it as an environment variable called `PROMPTLAYER_API_KEY`." ] }, { "cell_type": "code", "execution_count": 5, "id": "46ba25dc", "metadata": {}, "outputs": [], "source": [ "os.environ[\"PROMPTLAYER_API_KEY\"] = \"**********\"" ] }, { "cell_type": "markdown", "id": "bf0294de", "metadata": {}, "source": [ "## Use the PromptLayerOpenAI LLM like normal\n", "*You can optionally pass in `pl_tags` to track your requests with PromptLayer's tagging feature.*" ] }, { "cell_type": "code", "execution_count": 4, "id": "3acf0069", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='to take a nap in a cozy spot. I search around for a suitable place and finally settle on a soft cushion on the window sill. I curl up into a ball and close my eyes, relishing the warmth of the sun on my fur. As I drift off to sleep, I can hear the birds chirping outside and feel the gentle breeze blowing through the window. This is the life of a contented cat.', additional_kwargs={})" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat = PromptLayerChatOpenAI(pl_tags=[\"langchain\"])\n", "chat([HumanMessage(content=\"I am a cat and I want\")])" ] }, { "cell_type": "markdown", "id": "a2d76826", "metadata": {}, "source": [ "**The above request should now appear on your [PromptLayer dashboard](https://www.promptlayer.com).**" ] }, { "cell_type": "markdown", "id": "05e9e2fe", "metadata": {}, "source": [] }, { "cell_type": "markdown", "id": "c43803d1", "metadata": {}, "source": [ "## Using PromptLayer Track\n", "If you would like to use any of the [PromptLayer tracking features](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9), you need to pass the argument `return_pl_id` when instantializing the PromptLayer LLM to get the request id. " ] }, { "cell_type": "code", "execution_count": null, "id": "b7d4db01", "metadata": {}, "outputs": [], "source": [ "chat = PromptLayerChatOpenAI(return_pl_id=True)\n", "chat_results = chat.generate([[HumanMessage(content=\"I am a cat and I want\")]])\n", "\n", "for res in chat_results.generations:\n", " pl_request_id = res[0].generation_info[\"pl_request_id\"]\n", " promptlayer.track.score(request_id=pl_request_id, score=100)" ] }, { "cell_type": "markdown", "id": "13e56507", "metadata": {}, "source": [ "Using this allows you to track the performance of your model in the PromptLayer dashboard. If you are using a prompt template, you can attach a template to a request as well.\n", "Overall, this gives you the opportunity to track the performance of different templates and models in the PromptLayer dashboard." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "8a5edab282632443219e051e4ade2d1d5bbc671c781051bf1437897cbdfea0f1" } } }, "nbformat": 4, "nbformat_minor": 5 }