"""Test the loading function for evalutors.""" import pytest from langchain.embeddings.fake import FakeEmbeddings from langchain.evaluation.loading import EvaluatorType, load_evaluators from langchain.evaluation.schema import StringEvaluator from tests.unit_tests.llms.fake_chat_model import FakeChatModel from tests.unit_tests.llms.fake_llm import FakeLLM @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("evaluator_type", EvaluatorType) def test_load_evaluators(evaluator_type: EvaluatorType) -> None: """Test loading evaluators.""" fake_llm = FakeChatModel() embeddings = FakeEmbeddings(size=32) load_evaluators([evaluator_type], llm=fake_llm, embeddings=embeddings) # Test as string load_evaluators( [evaluator_type.value], # type: ignore llm=fake_llm, embeddings=embeddings, ) def test_criteria_eval_chain_requires_reference() -> None: """Test loading evaluators.""" fake_llm = FakeLLM( queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True ) evaluator = load_evaluators( [EvaluatorType.CRITERIA], llm=fake_llm, requires_reference=True )[0] if not isinstance(evaluator, StringEvaluator): raise ValueError("Evaluator is not a string evaluator") assert evaluator.requires_reference