# RAG with Supabase > [Supabase](https://supabase.com/docs) is an open-source Firebase alternative. It is built on top of [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL), a free and open-source relational database management system (RDBMS) and uses [pgvector](https://github.com/pgvector/pgvector) to store embeddings within your tables. Use this package to host a retrieval augment generation (RAG) API using LangServe + Supabase. ## Install Package From within your `langservehub` project run: ```shell poetry run poe add rag-supabase ``` ## Setup Supabase Database Use these steps to setup your Supabase database if you haven't already. 1. Head over to https://database.new to provision your Supabase database. 2. In the studio, jump to the [SQL editor](https://supabase.com/dashboard/project/_/sql/new) and run the following script to enable `pgvector` and setup your database as a vector store: ```sql -- Enable the pgvector extension to work with embedding vectors create extension if not exists vector; -- Create a table to store your documents create table documents ( id uuid primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector (1536) -- 1536 works for OpenAI embeddings, change as needed ); -- Create a function to search for documents create function match_documents ( query_embedding vector (1536), filter jsonb default '{}' ) returns table ( id uuid, content text, metadata jsonb, similarity float ) language plpgsql as $$ #variable_conflict use_column begin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding; end; $$; ``` ## Setup Environment Variables Since we are using [`SupabaseVectorStore`](https://python.langchain.com/docs/integrations/vectorstores/supabase) and [`OpenAIEmbeddings`](https://python.langchain.com/docs/integrations/text_embedding/openai), we need to load their API keys. Create a `.env` file in the root of your project: _.env_ ```shell SUPABASE_URL= SUPABASE_SERVICE_KEY= OPENAI_API_KEY= ``` To find your `SUPABASE_URL` and `SUPABASE_SERVICE_KEY`, head to your Supabase project's [API settings](https://supabase.com/dashboard/project/_/settings/api). - `SUPABASE_URL` corresponds to the Project URL - `SUPABASE_SERVICE_KEY` corresponds to the `service_role` API key To get your `OPENAI_API_KEY`, navigate to [API keys](https://platform.openai.com/account/api-keys) on your OpenAI account and create a new secret key. Add this file to your `.gitignore` if it isn't already there (so that we don't commit secrets): _.gitignore_ ``` .env ``` Install [`python-dotenv`](https://github.com/theskumar/python-dotenv) which we will use to load the environment variables into the app: ```shell poetry add python-dotenv ``` Finally, call `load_dotenv()` in `server.py`. _app/server.py_ ```python from dotenv import load_dotenv load_dotenv() ```