"""Test math utility functions.""" import importlib from typing import List import numpy as np import pytest from langchain_community.utils.math import cosine_similarity, cosine_similarity_top_k @pytest.fixture def X() -> List[List[float]]: return [[1.0, 2.0, 3.0], [0.0, 1.0, 0.0], [1.0, 2.0, 0.0]] @pytest.fixture def Y() -> List[List[float]]: return [[0.5, 1.0, 1.5], [1.0, 0.0, 0.0], [2.0, 5.0, 2.0], [0.0, 0.0, 0.0]] def test_cosine_similarity_zero() -> None: X = np.zeros((3, 3)) Y = np.random.random((3, 3)) expected = np.zeros((3, 3)) actual = cosine_similarity(X, Y) assert np.allclose(expected, actual) def test_cosine_similarity_identity() -> None: X = np.random.random((4, 4)) expected = np.ones(4) actual = np.diag(cosine_similarity(X, X)) assert np.allclose(expected, actual) def test_cosine_similarity_empty() -> None: empty_list: List[List[float]] = [] assert len(cosine_similarity(empty_list, empty_list)) == 0 assert len(cosine_similarity(empty_list, np.random.random((3, 3)))) == 0 def test_cosine_similarity(X: List[List[float]], Y: List[List[float]]) -> None: expected = [ [1.0, 0.26726124, 0.83743579, 0.0], [0.53452248, 0.0, 0.87038828, 0.0], [0.5976143, 0.4472136, 0.93419873, 0.0], ] actual = cosine_similarity(X, Y) assert np.allclose(expected, actual) def test_cosine_similarity_top_k(X: List[List[float]], Y: List[List[float]]) -> None: expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2), (2, 0)] expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579, 0.5976143] actual_idxs, actual_scores = cosine_similarity_top_k(X, Y) assert actual_idxs == expected_idxs assert np.allclose(expected_scores, actual_scores) def test_cosine_similarity_score_threshold( X: List[List[float]], Y: List[List[float]] ) -> None: expected_idxs = [(0, 0), (2, 2)] expected_scores = [1.0, 0.93419873] actual_idxs, actual_scores = cosine_similarity_top_k( X, Y, top_k=None, score_threshold=0.9 ) assert actual_idxs == expected_idxs assert np.allclose(expected_scores, actual_scores) def invoke_cosine_similarity_top_k_score_threshold( X: List[List[float]], Y: List[List[float]] ) -> None: expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2)] expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579] actual_idxs, actual_scores = cosine_similarity_top_k(X, Y, score_threshold=0.8) assert actual_idxs == expected_idxs assert np.allclose(expected_scores, actual_scores) def test_cosine_similarity_top_k_and_score_threshold( X: List[List[float]], Y: List[List[float]] ) -> None: if importlib.util.find_spec("simsimd"): raise ValueError("test should be run without simsimd installed.") invoke_cosine_similarity_top_k_score_threshold(X, Y) @pytest.mark.requires("simsimd") def test_cosine_similarity_top_k_and_score_threshold_with_simsimd( X: List[List[float]], Y: List[List[float]] ) -> None: # Same test, but ensuring simsimd is available in the project through the import. invoke_cosine_similarity_top_k_score_threshold(X, Y)