{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Neptune Open Cypher QA Chain\n", "This QA chain queries Neptune graph database using openCypher and returns human readable response\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.graphs.neptune_graph import NeptuneGraph\n", "\n", "\n", "host = \"\"\n", "port = 80\n", "use_https = False\n", "\n", "graph = NeptuneGraph(host=host, port=port, use_https=use_https)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.chains.graph_qa.neptune_cypher import NeptuneOpenCypherQAChain\n", "\n", "llm = ChatOpenAI(temperature=0, model=\"gpt-4\")\n", "\n", "chain = NeptuneOpenCypherQAChain.from_llm(llm=llm, graph=graph)\n", "\n", "chain.run(\"how many outgoing routes does the Austin airport have?\")" ] } ], "metadata": { "language_info": { "name": "python" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }