# Pydantic Compatibility - Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/) - v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/) - Pydantic v2 and v1 are under the same package name, so both versions cannot be installed at the same time ## LangChain Pydantic Migration Plan Langchain will carry out the migration to pydantic v2 in two steps: 1. 2023-08-17: LangChain will allow users to install either Pydantic V1 or V2. * Internally LangChain will continue to [use V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features). * During this time, users can pin their pydantic version to v1 to avoid breaking changes, or start a partial migration using pydantic v2 throughout their code, but avoiding mixing v1 and v2 code for LangChain (see below). 2. 2023-08-25: Langchain will migrate internally to using V2 code. * Users will have to upgrade to V2 as well to use LangChain. * Users should stop using the `pydantic.v1` namespace when using LangChain. * See the [bump-pydantic package](https://github.com/pydantic/bump-pydantic) to help with the upgrade process. ## Between 2023-08-17 and 2023-08-25 releases User can either pin to pydantic v1, and upgrade their code in one go once LangChain has migrated to v2 internally, or they can start a partial migration to v2, but must avoid mixing v1 and v2 code for LangChain. Below are two examples of showing how to avoid mixing pydantic v1 and v2 code in the case of inheritance and in the case of passing objects to LangChain. **Example 1: Extending via inheritance** **YES** ```python from pydantic.v1 import root_validator, validator class CustomTool(BaseTool): # BaseTool is v1 code x: int = Field(default=1) def _run(*args, **kwargs): return "hello" @validator('x') # v1 code @classmethod def validate_x(cls, x: int) -> int: return 1 CustomTool( name='custom_tool', description="hello", x=1, ) ``` Mixing Pydantic v2 primitives with Pydantic v1 primitives can raise cryptic errors **NO** ```python from pydantic import Field, field_validator # pydantic v2 class CustomTool(BaseTool): # BaseTool is v1 code x: int = Field(default=1) def _run(*args, **kwargs): return "hello" @field_validator('x') # v2 code @classmethod def validate_x(cls, x: int) -> int: return 1 CustomTool( name='custom_tool', description="hello", x=1, ) ``` **Example 2: Passing objects to LangChain** **YES** ```python from langchain.tools.base import Tool from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace class CalculatorInput(BaseModel): question: str = Field() Tool.from_function( # <-- tool uses v1 namespace func=lambda question: 'hello', name="Calculator", description="useful for when you need to answer questions about math", args_schema=CalculatorInput ) ``` **NO** ## After 2023-08-25 release * Users must upgrade to v2 * Users should not pass `pydantic.v1` derived objects to LangChain or rely on `pydantic.v1` when extending functionality