{ "cells": [ { "cell_type": "markdown", "id": "bdccb278", "metadata": {}, "source": [ "# Grobid\n", "\n", "GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.\n", "\n", "It is particularly good for sturctured PDFs, like academic papers.\n", "\n", "This loader uses GROBIB to parse PDFs into `Documents` that retain metadata associated with the section of text.\n", "\n", "---\n", "\n", "For users on `Mac` - \n", "\n", "(Note: additional instructions can be found [here](https://python.langchain.com/docs/ecosystem/integrations/grobid.mdx).)\n", "\n", "Install Java (Apple Silicon):\n", "```\n", "$ arch -arm64 brew install openjdk@11\n", "$ brew --prefix openjdk@11\n", "/opt/homebrew/opt/openjdk@ 11\n", "```\n", "\n", "In `~/.zshrc`:\n", "```\n", "export JAVA_HOME=/opt/homebrew/opt/openjdk@11\n", "export PATH=$JAVA_HOME/bin:$PATH\n", "```\n", "\n", "Then, in Terminal:\n", "```\n", "$ source ~/.zshrc\n", "```\n", "\n", "Confirm install:\n", "```\n", "$ which java\n", "/opt/homebrew/opt/openjdk@11/bin/java\n", "$ java -version \n", "openjdk version \"11.0.19\" 2023-04-18\n", "OpenJDK Runtime Environment Homebrew (build 11.0.19+0)\n", "OpenJDK 64-Bit Server VM Homebrew (build 11.0.19+0, mixed mode)\n", "```\n", "\n", "Then, get [Grobid](https://grobid.readthedocs.io/en/latest/Install-Grobid/#getting-grobid):\n", "```\n", "$ curl -LO https://github.com/kermitt2/grobid/archive/0.7.3.zip\n", "$ unzip 0.7.3.zip\n", "```\n", " \n", "Build\n", "```\n", "$ ./gradlew clean install\n", "```\n", "\n", "Then, run the server:" ] }, { "cell_type": "code", "execution_count": 1, "id": "2d8992fc", "metadata": {}, "outputs": [], "source": [ "! get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')" ] }, { "cell_type": "markdown", "id": "4b41bfb1", "metadata": {}, "source": [ "Now, we can use the data loader." ] }, { "cell_type": "code", "execution_count": null, "id": "640e9a4b", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders.parsers import GrobidParser\n", "from langchain.document_loaders.generic import GenericLoader" ] }, { "cell_type": "code", "execution_count": 4, "id": "ecdc1fb9", "metadata": {}, "outputs": [], "source": [ "loader = GenericLoader.from_filesystem(\n", " \"../Papers/\",\n", " glob=\"*\",\n", " suffixes=[\".pdf\"],\n", " parser=GrobidParser(segment_sentences=False),\n", ")\n", "docs = loader.load()" ] }, { "cell_type": "code", "execution_count": 5, "id": "efe9e356", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "docs[3].page_content" ] }, { "cell_type": "code", "execution_count": 6, "id": "5be03d17", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'text': 'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.',\n", " 'para': '2',\n", " 'bboxes': \"[[{'page': '1', 'x': '317.05', 'y': '509.17', 'h': '207.73', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '522.72', 'h': '220.08', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '536.27', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '549.82', 'h': '218.65', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '563.37', 'h': '136.98', 'w': '9.46'}], [{'page': '1', 'x': '446.49', 'y': '563.37', 'h': '78.11', 'w': '9.46'}, {'page': '1', 'x': '304.69', 'y': '576.92', 'h': '138.32', 'w': '9.46'}], [{'page': '1', 'x': '447.75', 'y': '576.92', 'h': '76.66', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '590.47', 'h': '219.63', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '604.02', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '617.56', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '631.11', 'h': '220.18', 'w': '9.46'}]]\",\n", " 'pages': \"('1', '1')\",\n", " 'section_title': 'Introduction',\n", " 'section_number': '1',\n", " 'paper_title': 'LLaMA: Open and Efficient Foundation Language Models',\n", " 'file_path': '/Users/31treehaus/Desktop/Papers/2302.13971.pdf'}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "docs[3].metadata" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }