{ "cells": [ { "cell_type": "markdown", "id": "fbc4bf6e", "metadata": {}, "source": [ "# Run arbitrary functions\n", "\n", "You can use arbitrary functions in the pipeline\n", "\n", "Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single input and unpacks it into multiple argument." ] }, { "cell_type": "code", "execution_count": 77, "id": "6bb221b3", "metadata": {}, "outputs": [], "source": [ "from langchain.schema.runnable import RunnableLambda\n", "\n", "def length_function(text):\n", " return len(text)\n", "\n", "def _multiple_length_function(text1, text2):\n", " return len(text1) * len(text2)\n", "\n", "def multiple_length_function(_dict):\n", " return _multiple_length_function(_dict[\"text1\"], _dict[\"text2\"])\n", "\n", "prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n", "\n", "chain1 = prompt | model\n", "\n", "chain = {\n", " \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n", " \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")} | RunnableLambda(multiple_length_function)\n", "} | prompt | model" ] }, { "cell_type": "code", "execution_count": 78, "id": "5488ec85", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='3 + 9 equals 12.', additional_kwargs={}, example=False)" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chain.invoke({\"foo\": \"bar\", \"bar\": \"gah\"})" ] }, { "cell_type": "markdown", "id": "4728ddd9-914d-42ce-ae9b-72c9ce8ec940", "metadata": {}, "source": [ "## Accepting a Runnable Config\n", "\n", "Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.RunnableConfig.html?highlight=runnableconfig#langchain.schema.runnable.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs." ] }, { "cell_type": "code", "execution_count": 139, "id": "80b3b5f6-5d58-44b9-807e-cce9a46bf49f", "metadata": {}, "outputs": [], "source": [ "from langchain.schema.runnable import RunnableConfig" ] }, { "cell_type": "code", "execution_count": 149, "id": "ff0daf0c-49dd-4d21-9772-e5fa133c5f36", "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "def parse_or_fix(text: str, config: RunnableConfig):\n", " fixing_chain = (\n", " ChatPromptTemplate.from_template(\n", " \"Fix the following text:\\n\\n```text\\n{input}\\n```\\nError: {error}\"\n", " \" Don't narrate, just respond with the fixed data.\"\n", " )\n", " | ChatOpenAI()\n", " | StrOutputParser()\n", " )\n", " for _ in range(3):\n", " try:\n", " return json.loads(text)\n", " except Exception as e:\n", " text = fixing_chain.invoke({\"input\": text, \"error\": e}, config)\n", " return \"Failed to parse\"" ] }, { "cell_type": "code", "execution_count": 152, "id": "1a5e709e-9d75-48c7-bb9c-503251990505", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tokens Used: 65\n", "\tPrompt Tokens: 56\n", "\tCompletion Tokens: 9\n", "Successful Requests: 1\n", "Total Cost (USD): $0.00010200000000000001\n" ] } ], "source": [ "from langchain.callbacks import get_openai_callback\n", "\n", "with get_openai_callback() as cb:\n", " RunnableLambda(parse_or_fix).invoke(\"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]})\n", " print(cb)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }