{ "cells": [ { "cell_type": "markdown", "id": "bf4061ce", "metadata": {}, "source": [ "# Caching Embeddings\n", "\n", "Embeddings can be stored or temporarily cached to avoid needing to recompute them.\n", "\n", "Caching embeddings can be done using a `CacheBackedEmbedder`.\n", "\n", "The cache backed embedder is a wrapper around an embedder that caches\n", "embeddings in a key-value store. \n", "\n", "The text is hashed and the hash is used as the key in the cache.\n", "\n", "\n", "The main supported way to initialized a `CacheBackedEmbedder` is `from_bytes_store`. This takes in the following parameters:\n", "\n", "- underlying_embedder: The embedder to use for embedding.\n", "- document_embedding_cache: The cache to use for storing document embeddings.\n", "- namespace: (optional, defaults to `\"\"`) The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used.\n", "\n", "**Attention**: Be sure to set the `namespace` parameter to avoid collisions of the same text embedded using different embeddings models." ] }, { "cell_type": "code", "execution_count": 1, "id": "a463c3c2-749b-40d1-a433-84f68a1cd1c7", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.embeddings import CacheBackedEmbedder\n", "from langchain.storage import InMemoryStore\n", "from langchain.storage import LocalFileStore\n", "from langchain.embeddings import OpenAIEmbeddings" ] }, { "cell_type": "markdown", "id": "564c9801-29f0-4452-aeac-527382e2c0e8", "metadata": {}, "source": [ "## In Memory\n", "\n", "This section shows how to set up an in memory cache for embeddings. This type of cache is primarily \n", "useful for unit tests or prototyping. Do **not** use this cache if you need to actually store the embeddings." ] }, { "cell_type": "code", "execution_count": 2, "id": "13bd1c5b-b7ba-4394-957c-7d5b5a841972", "metadata": { "tags": [] }, "outputs": [], "source": [ "store = InMemoryStore()" ] }, { "cell_type": "code", "execution_count": 3, "id": "9d99885f-99e1-498c-904d-6db539ac9466", "metadata": { "tags": [] }, "outputs": [], "source": [ "underlying_embedder = OpenAIEmbeddings()\n", "embedder = CacheBackedEmbedder.from_bytes_store(\n", " underlying_embedder, store, namespace=underlying_embedder.model\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "id": "682eb5d4-0b7a-4dac-b8fb-3de4ca6e421c", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 405 ms, sys: 32.9 ms, total: 438 ms\n", "Wall time: 715 ms\n" ] } ], "source": [ "%%time\n", "embeddings = embedder.embed_documents([\"hello\", \"goodbye\"])" ] }, { "cell_type": "markdown", "id": "95233026-147f-49d1-bd87-e1e8b88ebdbc", "metadata": {}, "source": [ "The second time we try to embed the embedding time is only 2 ms because the embeddings are looked up in the cache." ] }, { "cell_type": "code", "execution_count": 5, "id": "f819c3ff-a212-4d06-a5f7-5eb1435c1feb", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 1.55 ms, sys: 436 µs, total: 1.99 ms\n", "Wall time: 1.99 ms\n" ] } ], "source": [ "%%time\n", "embeddings_from_cache = embedder.embed_documents([\"hello\", \"goodbye\"])" ] }, { "cell_type": "code", "execution_count": 6, "id": "ec38fb72-90a9-4687-a483-c62c87d1f4dd", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "embeddings == embeddings_from_cache" ] }, { "cell_type": "markdown", "id": "f6cbe100-8587-4830-b207-fb8b524a9854", "metadata": {}, "source": [ "## File system\n", "\n", "This section covers how to use a file system store" ] }, { "cell_type": "code", "execution_count": 7, "id": "a0070271-0809-4528-97e0-2a88216846f3", "metadata": { "tags": [] }, "outputs": [], "source": [ "fs = LocalFileStore(\"./cache/\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "0b20e9fe-f57f-4d7c-9f81-105c5f8726f4", "metadata": { "tags": [] }, "outputs": [], "source": [ "embedder2 = CacheBackedEmbedder.from_bytes_store(\n", " underlying_embedder, fs, namespace=underlying_embedder.model\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "630515fd-bf5c-4d9c-a404-9705308f3a2c", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 10.5 ms, sys: 988 µs, total: 11.5 ms\n", "Wall time: 220 ms\n" ] } ], "source": [ "%%time\n", "embeddings = embedder2.embed_documents([\"hello\", \"goodbye\"])" ] }, { "cell_type": "code", "execution_count": 10, "id": "30e6bb87-42c9-4d08-88ac-0d22c9c449a1", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 3.49 ms, sys: 0 ns, total: 3.49 ms\n", "Wall time: 3.03 ms\n" ] } ], "source": [ "%%time\n", "embeddings = embedder2.embed_documents([\"hello\", \"goodbye\"])" ] }, { "cell_type": "markdown", "id": "12ed5a45-8352-4e0f-8583-5537397f53c0", "metadata": {}, "source": [ "Here are the embeddings that have been persisted to the directory `./cache`. \n", "\n", "Notice that the embedder takes a namespace parameter." ] }, { "cell_type": "code", "execution_count": 11, "id": "658e2914-05e9-44a3-a8fe-3fe17ca84039", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n", " 'text-embedding-ada-0026ba52e44-59c9-5cc9-a084-284061b13c80']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(fs.yield_keys())" ] }, { "cell_type": "markdown", "id": "c67f8e97-4851-4e26-ab6f-3418b0188dc4", "metadata": {}, "source": [ "## Using with a vectorstore\n", "\n", "Let's see this cache in action with the FAISS vectorstore." ] }, { "cell_type": "code", "execution_count": 12, "id": "9e4314d8-88ef-4f52-81ae-0be771168bb6", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.vectorstores import FAISS" ] }, { "cell_type": "code", "execution_count": 13, "id": "30743664-38f5-425d-8216-772b64e7f348", "metadata": {}, "outputs": [], "source": [ "fs = LocalFileStore(\"./cache/\")\n", "\n", "cached_embedder = CacheBackedEmbedder.from_bytes_store(\n", " OpenAIEmbeddings(), fs, namespace=underlying_embedder.model\n", ")" ] }, { "cell_type": "markdown", "id": "06a6f305-724f-4b71-adef-be0169f61381", "metadata": {}, "source": [ "The cache is empty prior to embedding" ] }, { "cell_type": "code", "execution_count": 14, "id": "f9ad627f-ced2-4277-b336-2434f22f2c8a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n", " 'text-embedding-ada-0026ba52e44-59c9-5cc9-a084-284061b13c80']" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(fs.yield_keys())" ] }, { "cell_type": "markdown", "id": "5814aa9c-e8e4-4079-accf-53c49615971e", "metadata": {}, "source": [ "Load the document, split it into chunks, embed each chunk and load it into the vector store." ] }, { "cell_type": "code", "execution_count": 16, "id": "cf958ac2-e60e-4668-b32c-8bb2d78b3c61", "metadata": {}, "outputs": [], "source": [ "raw_documents = TextLoader(\"../state_of_the_union.txt\").load()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "documents = text_splitter.split_documents(raw_documents)" ] }, { "cell_type": "markdown", "id": "fc433fec-ab64-4f11-ae8b-fc3dd76cd79a", "metadata": {}, "source": [ "create the vectorstore" ] }, { "cell_type": "code", "execution_count": 17, "id": "3a1d7bb8-3b72-4bb5-9013-cf7729caca61", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 124 ms, sys: 22.6 ms, total: 146 ms\n", "Wall time: 832 ms\n" ] } ], "source": [ "%%time\n", "db = FAISS.from_documents(documents, cached_embedder)" ] }, { "cell_type": "markdown", "id": "c94a734c-fa66-40ce-8610-12b00b7df334", "metadata": {}, "source": [ "If we try to create the vectostore again, it'll be much faster since it does not need to re-compute any embeddings." ] }, { "cell_type": "code", "execution_count": 18, "id": "714cb2e2-77ba-41a8-bb83-84e75342af2d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 32.9 ms, sys: 286 µs, total: 33.2 ms\n", "Wall time: 32.5 ms\n" ] } ], "source": [ "%%time\n", "db2 = FAISS.from_documents(documents, cached_embedder)" ] }, { "cell_type": "markdown", "id": "93d37b2a-5406-4e2c-b786-869e2430d19d", "metadata": {}, "source": [ "And here are some of the embeddings that got created:" ] }, { "cell_type": "code", "execution_count": 19, "id": "f2ca32dd-3712-4093-942b-4122f3dc8a8e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['text-embedding-ada-002614d7cf6-46f1-52fa-9d3a-740c39e7a20e',\n", " 'text-embedding-ada-0020fc1ede2-407a-5e14-8f8f-5642214263f5',\n", " 'text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n", " 'text-embedding-ada-002e4ad20ef-dfaa-5916-9459-f90c6d8e8159',\n", " 'text-embedding-ada-002a5ef11e4-0474-5725-8d80-81c91943b37f']" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(fs.yield_keys())[:5]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.10" } }, "nbformat": 4, "nbformat_minor": 5 }