{ "cells": [ { "cell_type": "markdown", "id": "fc0db1bc", "metadata": {}, "source": [ "# VectorStore Retriever\n", "\n", "The index - and therefore the retriever - that LangChain has the most support for is a VectorStoreRetriever. As the name suggests, this retriever is backed heavily by a VectorStore.\n", "\n", "Once you construct a VectorStore, its very easy to construct a retriever. Let's walk through an example." ] }, { "cell_type": "code", "execution_count": 1, "id": "5831703b", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", "loader = TextLoader('../../../state_of_the_union.txt')" ] }, { "cell_type": "code", "execution_count": 9, "id": "9fbcc58f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exiting: Cleaning up .chroma directory\n" ] } ], "source": [ "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.vectorstores import FAISS\n", "from langchain.embeddings import OpenAIEmbeddings\n", "\n", "documents = loader.load()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "texts = text_splitter.split_documents(documents)\n", "embeddings = OpenAIEmbeddings()\n", "db = FAISS.from_documents(texts, embeddings)" ] }, { "cell_type": "code", "execution_count": 10, "id": "0cbfb1af", "metadata": {}, "outputs": [], "source": [ "retriever = db.as_retriever()" ] }, { "cell_type": "code", "execution_count": 11, "id": "fc12700b", "metadata": {}, "outputs": [], "source": [ "docs = retriever.get_relevant_documents(\"what did he say about ketanji brown jackson\")" ] }, { "cell_type": "markdown", "id": "79b783de", "metadata": {}, "source": [ "By default, the vectorstore retriever uses similarity search. If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type." ] }, { "cell_type": "code", "execution_count": 12, "id": "44c7303e", "metadata": {}, "outputs": [], "source": [ "retriever = db.as_retriever(search_type=\"mmr\")" ] }, { "cell_type": "code", "execution_count": 13, "id": "d16ceec6", "metadata": {}, "outputs": [], "source": [ "docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")" ] }, { "cell_type": "markdown", "id": "c23b7698", "metadata": {}, "source": [ "You can also specify search kwargs like `k` to use when doing retrieval." ] }, { "cell_type": "code", "execution_count": 14, "id": "b5f44cdf", "metadata": {}, "outputs": [], "source": [ "retriever = db.as_retriever(search_kwargs={\"k\": 1})" ] }, { "cell_type": "code", "execution_count": 15, "id": "56b6a545", "metadata": {}, "outputs": [], "source": [ "docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")" ] }, { "cell_type": "code", "execution_count": 16, "id": "b5416858", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(docs)" ] }, { "cell_type": "code", "execution_count": null, "id": "9a658023", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 5 }