# langchain-mongodb # Installation ``` pip install -U langchain-mongodb ``` # Usage - See [integrations doc](../../../docs/docs/integrations/providers/mongodb_atlas.ipynb) for more in-depth usage instructions. - See [Getting Started with the LangChain Integration](https://www.mongodb.com/docs/atlas/atlas-vector-search/ai-integrations/langchain/#get-started-with-the-langchain-integration) for a walkthrough on using your first LangChain implementation with MongoDB Atlas. ## Using MongoDBAtlasVectorSearch ```python from langchain_mongodb import MongoDBAtlasVectorSearch # Pull MongoDB Atlas URI from environment variables MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI") DB_NAME = "langchain_db" COLLECTION_NAME = "test" ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name" MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME] # Create the vector search via `from_connection_string` vector_search = MongoDBAtlasVectorSearch.from_connection_string( MONGODB_ATLAS_CLUSTER_URI, DB_NAME + "." + COLLECTION_NAME, OpenAIEmbeddings(disallowed_special=()), index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) # Initialize MongoDB python client client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) # Create the vector search via instantiation vector_search_2 = MongoDBAtlasVectorSearch( collection=MONGODB_COLLECTION, embeddings=OpenAIEmbeddings(disallowed_special=()), index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) ```