{ "cells": [ { "cell_type": "markdown", "id": "bdccb278", "metadata": {}, "source": [ "# Grobid\n", "\n", "GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.\n", "\n", "It is designed and expected to be used to parse academic papers, where it works particularly well. Note: if the articles supplied to Grobid are large documents (e.g. dissertations) exceeding a certain number of elements, they might not be processed. \n", "\n", "This loader uses Grobid to parse PDFs into `Documents` that retain metadata associated with the section of text.\n", "\n", "---\n", "The best approach is to install Grobid via docker, see https://grobid.readthedocs.io/en/latest/Grobid-docker/. \n", "\n", "(Note: additional instructions can be found [here](https://python.langchain.com/docs/extras/integrations/providers/grobid.mdx).)\n", "\n", "Once grobid is up-and-running you can interact as described below. \n" ] }, { "cell_type": "markdown", "id": "4b41bfb1", "metadata": {}, "source": [ "Now, we can use the data loader." ] }, { "cell_type": "code", "execution_count": null, "id": "640e9a4b", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders.parsers import GrobidParser\n", "from langchain.document_loaders.generic import GenericLoader" ] }, { "cell_type": "code", "execution_count": 4, "id": "ecdc1fb9", "metadata": {}, "outputs": [], "source": [ "loader = GenericLoader.from_filesystem(\n", " \"../Papers/\",\n", " glob=\"*\",\n", " suffixes=[\".pdf\"],\n", " parser=GrobidParser(segment_sentences=False),\n", ")\n", "docs = loader.load()" ] }, { "cell_type": "code", "execution_count": 5, "id": "efe9e356", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "docs[3].page_content" ] }, { "cell_type": "code", "execution_count": 6, "id": "5be03d17", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'text': 'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.',\n", " 'para': '2',\n", " 'bboxes': \"[[{'page': '1', 'x': '317.05', 'y': '509.17', 'h': '207.73', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '522.72', 'h': '220.08', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '536.27', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '549.82', 'h': '218.65', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '563.37', 'h': '136.98', 'w': '9.46'}], [{'page': '1', 'x': '446.49', 'y': '563.37', 'h': '78.11', 'w': '9.46'}, {'page': '1', 'x': '304.69', 'y': '576.92', 'h': '138.32', 'w': '9.46'}], [{'page': '1', 'x': '447.75', 'y': '576.92', 'h': '76.66', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '590.47', 'h': '219.63', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '604.02', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '617.56', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '631.11', 'h': '220.18', 'w': '9.46'}]]\",\n", " 'pages': \"('1', '1')\",\n", " 'section_title': 'Introduction',\n", " 'section_number': '1',\n", " 'paper_title': 'LLaMA: Open and Efficient Foundation Language Models',\n", " 'file_path': '/Users/31treehaus/Desktop/Papers/2302.13971.pdf'}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "docs[3].metadata" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }