"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK: pip install google-cloud-aiplatform>=1.36.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ import os from typing import Optional import pytest from langchain_core.outputs import LLMResult from langchain_community.llms import VertexAI, VertexAIModelGarden model_names_to_test = ["text-bison@001", "gemini-pro"] model_names_to_test_with_default = [None] + model_names_to_test @pytest.mark.parametrize( "model_name", model_names_to_test_with_default, ) def test_vertex_initialization(model_name: str) -> None: llm = VertexAI(model_name=model_name) if model_name else VertexAI() assert llm._llm_type == "vertexai" try: assert llm.model_name == llm.client._model_id except AttributeError: assert llm.model_name == llm.client._model_name.split("/")[-1] @pytest.mark.parametrize( "model_name", model_names_to_test_with_default, ) def test_vertex_call(model_name: str) -> None: llm = ( VertexAI(model_name=model_name, temperature=0) if model_name else VertexAI(temperature=0.0) ) output = llm("Say foo:") assert isinstance(output, str) @pytest.mark.scheduled def test_vertex_generate() -> None: llm = VertexAI(temperature=0.3, n=2, model_name="text-bison@001") output = llm.generate(["Say foo:"]) assert isinstance(output, LLMResult) assert len(output.generations) == 1 assert len(output.generations[0]) == 2 @pytest.mark.scheduled def test_vertex_generate_code() -> None: llm = VertexAI(temperature=0.3, n=2, model_name="code-bison@001") output = llm.generate(["generate a python method that says foo:"]) assert isinstance(output, LLMResult) assert len(output.generations) == 1 assert len(output.generations[0]) == 2 @pytest.mark.scheduled async def test_vertex_agenerate() -> None: llm = VertexAI(temperature=0) output = await llm.agenerate(["Please say foo:"]) assert isinstance(output, LLMResult) @pytest.mark.scheduled @pytest.mark.parametrize( "model_name", model_names_to_test_with_default, ) def test_vertex_stream(model_name: str) -> None: llm = ( VertexAI(temperature=0, model_name=model_name) if model_name else VertexAI(temperature=0) ) outputs = list(llm.stream("Please say foo:")) assert isinstance(outputs[0], str) async def test_vertex_consistency() -> None: llm = VertexAI(temperature=0) output = llm.generate(["Please say foo:"]) streaming_output = llm.generate(["Please say foo:"], stream=True) async_output = await llm.agenerate(["Please say foo:"]) assert output.generations[0][0].text == streaming_output.generations[0][0].text assert output.generations[0][0].text == async_output.generations[0][0].text @pytest.mark.parametrize( "endpoint_os_variable_name,result_arg", [("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)], ) def test_model_garden( endpoint_os_variable_name: str, result_arg: Optional[str] ) -> None: """In order to run this test, you should provide endpoint names. Example: export FALCON_ENDPOINT_ID=... export LLAMA_ENDPOINT_ID=... export PROJECT=... """ endpoint_id = os.environ[endpoint_os_variable_name] project = os.environ["PROJECT"] location = "europe-west4" llm = VertexAIModelGarden( endpoint_id=endpoint_id, project=project, result_arg=result_arg, location=location, ) output = llm("What is the meaning of life?") assert isinstance(output, str) assert llm._llm_type == "vertexai_model_garden" @pytest.mark.parametrize( "endpoint_os_variable_name,result_arg", [("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)], ) def test_model_garden_generate( endpoint_os_variable_name: str, result_arg: Optional[str] ) -> None: """In order to run this test, you should provide endpoint names. Example: export FALCON_ENDPOINT_ID=... export LLAMA_ENDPOINT_ID=... export PROJECT=... """ endpoint_id = os.environ[endpoint_os_variable_name] project = os.environ["PROJECT"] location = "europe-west4" llm = VertexAIModelGarden( endpoint_id=endpoint_id, project=project, result_arg=result_arg, location=location, ) output = llm.generate(["What is the meaning of life?", "How much is 2+2"]) assert isinstance(output, LLMResult) assert len(output.generations) == 2 @pytest.mark.asyncio @pytest.mark.parametrize( "endpoint_os_variable_name,result_arg", [("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)], ) async def test_model_garden_agenerate( endpoint_os_variable_name: str, result_arg: Optional[str] ) -> None: endpoint_id = os.environ[endpoint_os_variable_name] project = os.environ["PROJECT"] location = "europe-west4" llm = VertexAIModelGarden( endpoint_id=endpoint_id, project=project, result_arg=result_arg, location=location, ) output = await llm.agenerate(["What is the meaning of life?", "How much is 2+2"]) assert isinstance(output, LLMResult) assert len(output.generations) == 2 @pytest.mark.parametrize( "model_name", model_names_to_test, ) def test_vertex_call_count_tokens(model_name: str) -> None: llm = VertexAI(model_name=model_name) output = llm.get_num_tokens("How are you?") assert output == 4