import sys from typing import Any, Dict, List from unittest.mock import MagicMock, patch import pytest from langchain_community.embeddings import GradientEmbeddings _MODEL_ID = "my_model_valid_id" _GRADIENT_SECRET = "secret_valid_token_123456" _GRADIENT_WORKSPACE_ID = "valid_workspace_12345" _GRADIENT_BASE_URL = "https://api.gradient.ai/api" _DOCUMENTS = [ "pizza", "another long pizza", "a document", "another long pizza", "super long document with many tokens", ] class GradientEmbeddingsModel(MagicMock): """MockGradientModel.""" def embed(self, inputs: List[Dict[str, str]]) -> Any: """Just duplicate the query m times.""" output = MagicMock() embeddings = [] for i, inp in enumerate(inputs): # verify correct ordering inp = inp["input"] if "pizza" in inp: v = [1.0, 0.0, 0.0] elif "document" in inp: v = [0.0, 0.9, 0.0] else: v = [0.0, 0.0, -1.0] if len(inp) > 10: v[2] += 0.1 output_inner = MagicMock() output_inner.embedding = v embeddings.append(output_inner) output.embeddings = embeddings return output async def aembed(self, *args) -> Any: return self.embed(*args) class MockGradient(MagicMock): """Mock Gradient package.""" def __init__(self, access_token: str, workspace_id, host): assert access_token == _GRADIENT_SECRET assert workspace_id == _GRADIENT_WORKSPACE_ID assert host == _GRADIENT_BASE_URL def get_embeddings_model(self, slug: str) -> GradientEmbeddingsModel: assert slug == _MODEL_ID return GradientEmbeddingsModel() def close(self) -> None: """Mock Gradient close.""" return class MockGradientaiPackage(MagicMock): """Mock Gradientai package.""" Gradient = MockGradient __version__ = "1.4.0" def test_gradient_llm_sync() -> None: with patch.dict(sys.modules, {"gradientai": MockGradientaiPackage()}): embedder = GradientEmbeddings( gradient_api_url=_GRADIENT_BASE_URL, gradient_access_token=_GRADIENT_SECRET, gradient_workspace_id=_GRADIENT_WORKSPACE_ID, model=_MODEL_ID, ) assert embedder.gradient_access_token == _GRADIENT_SECRET assert embedder.gradient_api_url == _GRADIENT_BASE_URL assert embedder.gradient_workspace_id == _GRADIENT_WORKSPACE_ID assert embedder.model == _MODEL_ID response = embedder.embed_documents(_DOCUMENTS) want = [ [1.0, 0.0, 0.0], # pizza [1.0, 0.0, 0.1], # pizza + long [0.0, 0.9, 0.0], # doc [1.0, 0.0, 0.1], # pizza + long [0.0, 0.9, 0.1], # doc + long ] assert response == want def test_gradient_wrong_setup() -> None: with pytest.raises(Exception): GradientEmbeddings( gradient_api_url=_GRADIENT_BASE_URL, gradient_access_token="", # empty gradient_workspace_id=_GRADIENT_WORKSPACE_ID, model=_MODEL_ID, ) def test_gradient_wrong_setup2() -> None: with pytest.raises(Exception): GradientEmbeddings( gradient_api_url=_GRADIENT_BASE_URL, gradient_access_token=_GRADIENT_SECRET, gradient_workspace_id="", # empty model=_MODEL_ID, ) def test_gradient_wrong_setup3() -> None: with pytest.raises(Exception): GradientEmbeddings( gradient_api_url="-", # empty gradient_access_token=_GRADIENT_SECRET, gradient_workspace_id=_GRADIENT_WORKSPACE_ID, model=_MODEL_ID, )