from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Tuple from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from langchain_community.vectorstores.utils import DistanceStrategy logger = logging.getLogger(__name__) class KDBAI(VectorStore): """`KDB.AI` vector store. See [https://kdb.ai](https://kdb.ai) To use, you should have the `kdbai_client` python package installed. Args: table: kdbai_client.Table object to use as storage, embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface, distance_strategy: One option from DistanceStrategy.EUCLIDEAN_DISTANCE, DistanceStrategy.DOT_PRODUCT or DistanceStrategy.COSINE. See the example [notebook](https://github.com/KxSystems/langchain/blob/KDB.AI/docs/docs/integrations/vectorstores/kdbai.ipynb). """ def __init__( self, table: Any, embedding: Embeddings, distance_strategy: Optional[ DistanceStrategy ] = DistanceStrategy.EUCLIDEAN_DISTANCE, ): try: import kdbai_client # noqa except ImportError: raise ImportError( "Could not import kdbai_client python package. " "Please install it with `pip install kdbai_client`." ) self._table = table self._embedding = embedding self.distance_strategy = distance_strategy @property def embeddings(self) -> Optional[Embeddings]: if isinstance(self._embedding, Embeddings): return self._embedding return None def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]: if isinstance(self._embedding, Embeddings): return self._embedding.embed_documents(list(texts)) return [self._embedding(t) for t in texts] def _embed_query(self, text: str) -> List[float]: if isinstance(self._embedding, Embeddings): return self._embedding.embed_query(text) return self._embedding(text) def _insert( self, texts: List[str], ids: Optional[List[str]], metadata: Optional[Any] = None, ) -> None: try: import numpy as np except ImportError: raise ImportError( "Could not import numpy python package. " "Please install it with `pip install numpy`." ) try: import pandas as pd except ImportError: raise ImportError( "Could not import pandas python package. " "Please install it with `pip install pandas`." ) embeds = self._embedding.embed_documents(texts) df = pd.DataFrame() df["id"] = ids df["text"] = [t.encode("utf-8") for t in texts] df["embeddings"] = [np.array(e, dtype="float32") for e in embeds] if metadata is not None: df = pd.concat([df, metadata], axis=1) self._table.insert(df, warn=False) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]]): List of metadata corresponding to each chunk of text. ids (Optional[List[str]]): List of IDs corresponding to each chunk of text. batch_size (Optional[int]): Size of batch of chunks of text to insert at once. Returns: List[str]: List of IDs of the added texts. """ try: import pandas as pd except ImportError: raise ImportError( "Could not import pandas python package. " "Please install it with `pip install pandas`." ) texts = list(texts) metadf: pd.DataFrame = None if metadatas is not None: if isinstance(metadatas, pd.DataFrame): metadf = metadatas else: metadf = pd.DataFrame(metadatas) out_ids: List[str] = [] nbatches = (len(texts) - 1) // batch_size + 1 for i in range(nbatches): istart = i * batch_size iend = (i + 1) * batch_size batch = texts[istart:iend] if ids: batch_ids = ids[istart:iend] else: batch_ids = [str(uuid.uuid4()) for _ in range(len(batch))] if metadf is not None: batch_meta = metadf.iloc[istart:iend].reset_index(drop=True) else: batch_meta = None self._insert(batch, batch_ids, batch_meta) out_ids = out_ids + batch_ids return out_ids def add_documents( self, documents: List[Document], batch_size: int = 32, **kwargs: Any ) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. batch_size (Optional[int]): Size of batch of documents to insert at once. Returns: List[str]: List of IDs of the added texts. """ try: import pandas as pd except ImportError: raise ImportError( "Could not import pandas python package. " "Please install it with `pip install pandas`." ) texts = [x.page_content for x in documents] metadata = pd.DataFrame([x.metadata for x in documents]) return self.add_texts(texts, metadata=metadata, batch_size=batch_size) def similarity_search_with_score( self, query: str, k: int = 1, filter: Optional[List] = [], **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with distance from a query string. Args: query (str): Query string. k (Optional[int]): number of neighbors to retrieve. filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html Returns: List[Document]: List of similar documents. """ return self.similarity_search_by_vector_with_score( self._embed_query(query), k=k, filter=filter, **kwargs ) def similarity_search_by_vector_with_score( self, embedding: List[float], *, k: int = 1, filter: Optional[List] = [], **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to embedding, along with scores. Args: embedding (List[float]): query vector. k (Optional[int]): number of neighbors to retrieve. filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html Returns: List[Document]: List of similar documents. """ if "n" in kwargs: k = kwargs.pop("n") matches = self._table.search(vectors=[embedding], n=k, filter=filter, **kwargs)[ 0 ] docs = [] for row in matches.to_dict(orient="records"): text = row.pop("text") score = row.pop("__nn_distance") docs.append( ( Document( page_content=text, metadata={k: v for k, v in row.items() if k != "text"}, ), score, ) ) return docs def similarity_search( self, query: str, k: int = 1, filter: Optional[List] = [], **kwargs: Any, ) -> List[Document]: """Run similarity search from a query string. Args: query (str): Query string. k (Optional[int]): number of neighbors to retrieve. filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html Returns: List[Document]: List of similar documents. """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls: Any, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Any: """Not implemented.""" raise Exception("Not implemented.")