import os from git import Repo from langchain.prompts import ChatPromptTemplate from langchain.text_splitter import Language, RecursiveCharacterTextSplitter from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers import LanguageParser from langchain_community.embeddings import GPT4AllEmbeddings from langchain_community.llms.fireworks import Fireworks from langchain_community.vectorstores import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough # Check API key if os.environ.get("FIREWORKS_API_KEY", None) is None: raise Exception("Missing `FIREWORKS_API_KEY` environment variable.") # Load codebase # Set local path repo_path = "/Users/rlm/Desktop/tmp_repo" # Use LangChain as an example repo = Repo.clone_from("https://github.com/langchain-ai/langchain", to_path=repo_path) loader = GenericLoader.from_filesystem( repo_path + "/libs/langchain/langchain", glob="**/*", suffixes=[".py"], parser=LanguageParser(language=Language.PYTHON, parser_threshold=500), ) documents = loader.load() # Split python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=2000, chunk_overlap=200 ) texts = python_splitter.split_documents(documents) # Add to vectorDB vectorstore = Chroma.from_documents( documents=texts, collection_name="codebase-rag", embedding=GPT4AllEmbeddings(), ) retriever = vectorstore.as_retriever() # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # Initialize a Fireworks model model = Fireworks(model="accounts/fireworks/models/llama-v2-34b-code-instruct") # RAG chain chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)