from langchain.retrievers.multi_query import MultiQueryRetriever from langchain_community.chat_models import ChatOllama, ChatOpenAI from langchain_community.document_loaders import WebBaseLoader from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate, PromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter # Load loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) # Add to vectorDB vectorstore = Chroma.from_documents( documents=all_splits, collection_name="rag-private", embedding=OpenAIEmbeddings(), ) QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to generate five different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""", ) # Add the LLM downloaded from Ollama ollama_llm = "zephyr" llm = ChatOllama(model=ollama_llm) # Run retriever = MultiQueryRetriever.from_llm( vectorstore.as_retriever(), llm, prompt=QUERY_PROMPT ) # "lines" is the key (attribute name) of the parsed output # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() ) # Add typing for input class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)