{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# LLMCheckerChain\n", "This notebook showcases how to use LLMCheckerChain." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMCheckerChain chain...\u001b[0m\n", "\n", "\n", "\u001b[1m> Entering new SequentialChain chain...\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "' No mammal lays the biggest eggs. The Elephant Bird, which was a species of giant bird, laid the largest eggs of any bird.'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.chains import LLMCheckerChain\n", "from langchain.llms import OpenAI\n", "\n", "llm = OpenAI(temperature=0.7)\n", "\n", "text = \"What type of mammal lays the biggest eggs?\"\n", "\n", "checker_chain = LLMCheckerChain.from_llm(llm, verbose=True)\n", "\n", "checker_chain.run(text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }