"""Unit tests for agents.""" from typing import Any, List, Mapping, Optional from pydantic import BaseModel from langchain.agents import AgentExecutor, Tool, initialize_agent from langchain.callbacks.base import CallbackManager from langchain.llms.base import LLM from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler class FakeListLLM(LLM, BaseModel): """Fake LLM for testing that outputs elements of a list.""" responses: List[str] i: int = -1 def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Increment counter, and then return response in that index.""" self.i += 1 print(f"=== Mock Response #{self.i} ===") print(self.responses[self.i]) return self.responses[self.i] @property def _identifying_params(self) -> Mapping[str, Any]: return {} @property def _llm_type(self) -> str: """Return type of llm.""" return "fake_list" def _get_agent(**kwargs: Any) -> AgentExecutor: """Get agent for testing.""" bad_action_name = "BadAction" responses = [ f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment", "Oh well\nAction: Final Answer\nAction Input: curses foiled again", ] fake_llm = FakeListLLM(responses=responses) tools = [ Tool("Search", lambda x: x, "Useful for searching"), Tool("Lookup", lambda x: x, "Useful for looking up things in a table"), ] agent = initialize_agent( tools, fake_llm, agent="zero-shot-react-description", verbose=True, **kwargs ) return agent def test_agent_bad_action() -> None: """Test react chain when bad action given.""" agent = _get_agent() output = agent.run("when was langchain made") assert output == "curses foiled again" def test_agent_stopped_early() -> None: """Test react chain when bad action given.""" agent = _get_agent(max_iterations=0) output = agent.run("when was langchain made") assert output == "Agent stopped due to max iterations." def test_agent_with_callbacks_global() -> None: """Test react chain with callbacks by setting verbose globally.""" import langchain langchain.verbose = True handler = FakeCallbackHandler() manager = CallbackManager(handlers=[handler]) tool = "Search" responses = [ f"FooBarBaz\nAction: {tool}\nAction Input: misalignment", "Oh well\nAction: Final Answer\nAction Input: curses foiled again", ] fake_llm = FakeListLLM(responses=responses, callback_manager=manager, verbose=True) tools = [ Tool("Search", lambda x: x, "Useful for searching"), ] agent = initialize_agent( tools, fake_llm, agent="zero-shot-react-description", verbose=True, callback_manager=manager, ) output = agent.run("when was langchain made") assert output == "curses foiled again" # 1 top level chain run runs, 2 LLMChain runs, 2 LLM runs, 1 tool run assert handler.chain_starts == handler.chain_ends == 3 assert handler.llm_starts == handler.llm_ends == 2 assert handler.tool_starts == handler.tool_ends == 1 assert handler.starts == 6 # 1 extra agent end assert handler.ends == 7 assert handler.errors == 0 # during LLMChain assert handler.text == 2 def test_agent_with_callbacks_local() -> None: """Test react chain with callbacks by setting verbose locally.""" import langchain langchain.verbose = False handler = FakeCallbackHandler() manager = CallbackManager(handlers=[handler]) tool = "Search" responses = [ f"FooBarBaz\nAction: {tool}\nAction Input: misalignment", "Oh well\nAction: Final Answer\nAction Input: curses foiled again", ] fake_llm = FakeListLLM(responses=responses, callback_manager=manager, verbose=True) tools = [ Tool("Search", lambda x: x, "Useful for searching"), ] agent = initialize_agent( tools, fake_llm, agent="zero-shot-react-description", verbose=True, callback_manager=manager, ) agent.agent.llm_chain.verbose = True output = agent.run("when was langchain made") assert output == "curses foiled again" # 1 top level chain run, 2 LLMChain starts, 2 LLM runs, 1 tool run assert handler.chain_starts == handler.chain_ends == 3 assert handler.llm_starts == handler.llm_ends == 2 assert handler.tool_starts == handler.tool_ends == 1 assert handler.starts == 6 # 1 extra agent end assert handler.ends == 7 assert handler.errors == 0 # during LLMChain assert handler.text == 2 def test_agent_with_callbacks_not_verbose() -> None: """Test react chain with callbacks but not verbose.""" import langchain langchain.verbose = False handler = FakeCallbackHandler() manager = CallbackManager(handlers=[handler]) tool = "Search" responses = [ f"FooBarBaz\nAction: {tool}\nAction Input: misalignment", "Oh well\nAction: Final Answer\nAction Input: curses foiled again", ] fake_llm = FakeListLLM(responses=responses, callback_manager=manager) tools = [ Tool("Search", lambda x: x, "Useful for searching"), ] agent = initialize_agent( tools, fake_llm, agent="zero-shot-react-description", callback_manager=manager, ) output = agent.run("when was langchain made") assert output == "curses foiled again" # 1 top level chain run, 2 LLMChain runs, 2 LLM runs, 1 tool run assert handler.starts == 0 assert handler.ends == 0 assert handler.errors == 0 def test_agent_tool_return_direct() -> None: """Test agent using tools that return directly.""" tool = "Search" responses = [ f"FooBarBaz\nAction: {tool}\nAction Input: misalignment", "Oh well\nAction: Final Answer\nAction Input: curses foiled again", ] fake_llm = FakeListLLM(responses=responses) tools = [ Tool("Search", lambda x: x, "Useful for searching", return_direct=True), ] agent = initialize_agent( tools, fake_llm, agent="zero-shot-react-description", ) output = agent.run("when was langchain made") assert output == "misalignment" def test_agent_with_new_prefix_suffix() -> None: """Test agent initilization kwargs with new prefix and suffix.""" fake_llm = FakeListLLM( responses=["FooBarBaz\nAction: Search\nAction Input: misalignment"] ) tools = [ Tool("Search", lambda x: x, "Useful for searching", return_direct=True), ] prefix = "FooBarBaz" suffix = "Begin now!\nInput: {input}\nThought: {agent_scratchpad}" agent = initialize_agent( tools=tools, llm=fake_llm, agent="zero-shot-react-description", agent_kwargs={"prefix": prefix, "suffix": suffix}, ) # avoids "BasePromptTemplate" has no attribute "template" error assert hasattr(agent.agent.llm_chain.prompt, "template") prompt_str = agent.agent.llm_chain.prompt.template assert prompt_str.startswith(prefix), "Prompt does not start with prefix" assert prompt_str.endswith(suffix), "Prompt does not end with suffix"