{ "cells": [ { "cell_type": "markdown", "id": "e49f1e0d", "metadata": {}, "source": [ "# OpenAI\n", "\n", "This notebook covers how to get started with OpenAI chat models." ] }, { "cell_type": "code", "execution_count": 1, "id": "522686de", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.prompts.chat import (\n", " ChatPromptTemplate,\n", " SystemMessagePromptTemplate,\n", " AIMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")\n", "from langchain.schema import AIMessage, HumanMessage, SystemMessage" ] }, { "cell_type": "code", "execution_count": 2, "id": "62e0dbc3", "metadata": { "tags": [] }, "outputs": [], "source": [ "chat = ChatOpenAI(temperature=0)" ] }, { "cell_type": "code", "execution_count": 3, "id": "ce16ad78-8e6f-48cd-954e-98be75eb5836", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"J'aime programmer.\", additional_kwargs={}, example=False)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "messages = [\n", " SystemMessage(\n", " content=\"You are a helpful assistant that translates English to French.\"\n", " ),\n", " HumanMessage(\n", " content=\"Translate this sentence from English to French. I love programming.\"\n", " ),\n", "]\n", "chat(messages)" ] }, { "cell_type": "markdown", "id": "778f912a-66ea-4a5d-b3de-6c7db4baba26", "metadata": {}, "source": [ "You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n", "\n", "For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:" ] }, { "cell_type": "code", "execution_count": 4, "id": "180c5cc8", "metadata": {}, "outputs": [], "source": [ "template = (\n", " \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n", ")\n", "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n", "human_template = \"{text}\"\n", "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)" ] }, { "cell_type": "code", "execution_count": 5, "id": "fbb043e6", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"J'adore la programmation.\", additional_kwargs={})" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt = ChatPromptTemplate.from_messages(\n", " [system_message_prompt, human_message_prompt]\n", ")\n", "\n", "# get a chat completion from the formatted messages\n", "chat(\n", " chat_prompt.format_prompt(\n", " input_language=\"English\", output_language=\"French\", text=\"I love programming.\"\n", " ).to_messages()\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "c095285d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }