{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Writer\n", "\n", "[Writer](https://writer.com/) is a platform to generate different language content.\n", "\n", "This example goes over how to use LangChain to interact with `Writer` [models](https://dev.writer.com/docs/models).\n", "\n", "You have to get the WRITER_API_KEY [here](https://dev.writer.com/docs)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [ { "name": "stdin", "output_type": "stream", "text": [ " ········\n" ] } ], "source": [ "from getpass import getpass\n", "\n", "WRITER_API_KEY = getpass()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"WRITER_API_KEY\"] = WRITER_API_KEY" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms import Writer\n", "from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [], "source": [ "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "tags": [] }, "outputs": [], "source": [ "# If you get an error, probably, you need to set up the \"base_url\" parameter that can be taken from the error log.\n", "\n", "llm = Writer()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [] }, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n", "\n", "llm_chain.run(question)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03" } } }, "nbformat": 4, "nbformat_minor": 4 }