{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Motörhead Memory\n", "[Motörhead](https://github.com/getmetal/motorhead) is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications.\n", "\n", "## Setup\n", "\n", "See instructions at [Motörhead](https://github.com/getmetal/motorhead) for running the server locally.\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from langchain.memory.motorhead_memory import MotorheadMemory\n", "from langchain.llms import OpenAI\nfrom langchain.chains import LLMChain\nfrom langchain.prompts import PromptTemplate\n", "\n", "template = \"\"\"You are a chatbot having a conversation with a human.\n", "\n", "{chat_history}\n", "Human: {human_input}\n", "AI:\"\"\"\n", "\n", "prompt = PromptTemplate(\n", " input_variables=[\"chat_history\", \"human_input\"], template=template\n", ")\n", "memory = MotorheadMemory(\n", " session_id=\"testing-1\", url=\"http://localhost:8080\", memory_key=\"chat_history\"\n", ")\n", "\n", "await memory.init()\n", "# loads previous state from Motörhead 🤘\n", "\n", "llm_chain = LLMChain(\n", " llm=OpenAI(),\n", " prompt=prompt,\n", " verbose=True,\n", " memory=memory,\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n", "\n", "\n", "Human: hi im bob\n", "AI:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "' Hi Bob, nice to meet you! How are you doing today?'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.run(\"hi im bob\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n", "\n", "Human: hi im bob\n", "AI: Hi Bob, nice to meet you! How are you doing today?\n", "Human: whats my name?\n", "AI:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "' You said your name is Bob. Is that correct?'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.run(\"whats my name?\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n", "\n", "Human: hi im bob\n", "AI: Hi Bob, nice to meet you! How are you doing today?\n", "Human: whats my name?\n", "AI: You said your name is Bob. Is that correct?\n", "Human: whats for dinner?\n", "AI:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "\" I'm sorry, I'm not sure what you're asking. Could you please rephrase your question?\"" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.run(\"whats for dinner?\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 2 }