{ "cells": [ { "cell_type": "markdown", "id": "9e9b7651", "metadata": {}, "source": [ "# How to write a custom LLM wrapper\n", "\n", "This notebook goes over how to create a custom LLM wrapper, in case you want to use your own LLM or a different wrapper than one that is supported in LangChain.\n", "\n", "There is only one required thing that a custom LLM needs to implement:\n", "\n", "1. A `_call` method that takes in a string, some optional stop words, and returns a string\n", "\n", "There is a second optional thing it can implement:\n", "\n", "1. An `_identifying_params` property that is used to help with printing of this class. Should return a dictionary.\n", "\n", "Let's implement a very simple custom LLM that just returns the first N characters of the input." ] }, { "cell_type": "code", "execution_count": 1, "id": "a65696a0", "metadata": {}, "outputs": [], "source": [ "from langchain.llms.base import LLM\n", "from typing import Optional, List, Mapping, Any" ] }, { "cell_type": "code", "execution_count": 2, "id": "d5ceff02", "metadata": {}, "outputs": [], "source": [ "class CustomLLM(LLM):\n", " \n", " n: int\n", " \n", " @property\n", " def _llm_type(self) -> str:\n", " return \"custom\"\n", " \n", " def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:\n", " if stop is not None:\n", " raise ValueError(\"stop kwargs are not permitted.\")\n", " return prompt[:self.n]\n", " \n", " @property\n", " def _identifying_params(self) -> Mapping[str, Any]:\n", " \"\"\"Get the identifying parameters.\"\"\"\n", " return {\"n\": self.n}" ] }, { "cell_type": "markdown", "id": "714dede0", "metadata": {}, "source": [ "We can now use this as an any other LLM." ] }, { "cell_type": "code", "execution_count": 3, "id": "10e5ece6", "metadata": {}, "outputs": [], "source": [ "llm = CustomLLM(n=10)" ] }, { "cell_type": "code", "execution_count": 4, "id": "8cd49199", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'This is a '" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm(\"This is a foobar thing\")" ] }, { "cell_type": "markdown", "id": "bbfebea1", "metadata": {}, "source": [ "We can also print the LLM and see its custom print." ] }, { "cell_type": "code", "execution_count": 5, "id": "9c33fa19", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1mCustomLLM\u001b[0m\n", "Params: {'n': 10}\n" ] } ], "source": [ "print(llm)" ] }, { "cell_type": "code", "execution_count": null, "id": "6dac3f47", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }