"""Test the LangChain+ client.""" import uuid from datetime import datetime from typing import Any, Dict, List, Optional, Union from unittest import mock import pytest from langchainplus_sdk.client import LangChainPlusClient from langchainplus_sdk.schemas import Dataset, Example from langchain.base_language import BaseLanguageModel from langchain.chains.base import Chain from langchain.client.runner_utils import ( InputFormatError, _get_messages, _get_prompts, arun_on_dataset, run_llm, ) from tests.unit_tests.llms.fake_chat_model import FakeChatModel from tests.unit_tests.llms.fake_llm import FakeLLM _CREATED_AT = datetime(2015, 1, 1, 0, 0, 0) _TENANT_ID = "7a3d2b56-cd5b-44e5-846f-7eb6e8144ce4" _EXAMPLE_MESSAGE = { "data": {"content": "Foo", "example": False, "additional_kwargs": {}}, "type": "human", } _VALID_MESSAGES = [ {"messages": [_EXAMPLE_MESSAGE], "other_key": "value"}, {"messages": [], "other_key": "value"}, { "messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]], "other_key": "value", }, {"any_key": [_EXAMPLE_MESSAGE]}, {"any_key": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]]}, ] _VALID_PROMPTS = [ {"prompts": ["foo", "bar", "baz"], "other_key": "value"}, {"prompt": "foo", "other_key": ["bar", "baz"]}, {"some_key": "foo"}, {"some_key": ["foo", "bar"]}, ] @pytest.mark.parametrize( "inputs", _VALID_MESSAGES, ) def test__get_messages_valid(inputs: Dict[str, Any]) -> None: {"messages": []} _get_messages(inputs) @pytest.mark.parametrize( "inputs", _VALID_PROMPTS, ) def test__get_prompts_valid(inputs: Dict[str, Any]) -> None: _get_prompts(inputs) @pytest.mark.parametrize( "inputs", [ {"prompts": "foo"}, {"prompt": ["foo"]}, {"some_key": 3}, {"some_key": "foo", "other_key": "bar"}, ], ) def test__get_prompts_invalid(inputs: Dict[str, Any]) -> None: with pytest.raises(InputFormatError): _get_prompts(inputs) @pytest.mark.parametrize( "inputs", [ {"one_key": [_EXAMPLE_MESSAGE], "other_key": "value"}, { "messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], _EXAMPLE_MESSAGE], "other_key": "value", }, {"prompts": "foo"}, {}, ], ) def test__get_messages_invalid(inputs: Dict[str, Any]) -> None: with pytest.raises(InputFormatError): _get_messages(inputs) @pytest.mark.parametrize("inputs", _VALID_PROMPTS + _VALID_MESSAGES) def test_run_llm_all_formats(inputs: Dict[str, Any]) -> None: llm = FakeLLM() run_llm(llm, inputs, mock.MagicMock()) @pytest.mark.parametrize("inputs", _VALID_MESSAGES + _VALID_PROMPTS) def test_run_chat_model_all_formats(inputs: Dict[str, Any]) -> None: llm = FakeChatModel() run_llm(llm, inputs, mock.MagicMock()) @pytest.mark.asyncio async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None: dataset = Dataset( id=uuid.uuid4(), name="test", description="Test dataset", owner_id="owner", created_at=_CREATED_AT, tenant_id=_TENANT_ID, ) uuids = [ "0c193153-2309-4704-9a47-17aee4fb25c8", "0d11b5fd-8e66-4485-b696-4b55155c0c05", "90d696f0-f10d-4fd0-b88b-bfee6df08b84", "4ce2c6d8-5124-4c0c-8292-db7bdebcf167", "7b5a524c-80fa-4960-888e-7d380f9a11ee", ] examples = [ Example( id=uuids[0], created_at=_CREATED_AT, inputs={"input": "1"}, outputs={"output": "2"}, dataset_id=str(uuid.uuid4()), ), Example( id=uuids[1], created_at=_CREATED_AT, inputs={"input": "3"}, outputs={"output": "4"}, dataset_id=str(uuid.uuid4()), ), Example( id=uuids[2], created_at=_CREATED_AT, inputs={"input": "5"}, outputs={"output": "6"}, dataset_id=str(uuid.uuid4()), ), Example( id=uuids[3], created_at=_CREATED_AT, inputs={"input": "7"}, outputs={"output": "8"}, dataset_id=str(uuid.uuid4()), ), Example( id=uuids[4], created_at=_CREATED_AT, inputs={"input": "9"}, outputs={"output": "10"}, dataset_id=str(uuid.uuid4()), ), ] def mock_read_dataset(*args: Any, **kwargs: Any) -> Dataset: return dataset def mock_list_examples(*args: Any, **kwargs: Any) -> List[Example]: return examples async def mock_arun_chain( example: Example, llm_or_chain: Union[BaseLanguageModel, Chain], n_repetitions: int, tracer: Any, tags: Optional[List[str]] = None, ) -> List[Dict[str, Any]]: return [ {"result": f"Result for example {example.id}"} for _ in range(n_repetitions) ] def mock_create_project(*args: Any, **kwargs: Any) -> None: pass with mock.patch.object( LangChainPlusClient, "read_dataset", new=mock_read_dataset ), mock.patch.object( LangChainPlusClient, "list_examples", new=mock_list_examples ), mock.patch( "langchain.client.runner_utils._arun_llm_or_chain", new=mock_arun_chain ), mock.patch.object( LangChainPlusClient, "create_project", new=mock_create_project ): client = LangChainPlusClient(api_url="http://localhost:1984", api_key="123") chain = mock.MagicMock() num_repetitions = 3 results = await arun_on_dataset( dataset_name="test", llm_or_chain_factory=lambda: chain, concurrency_level=2, project_name="test_project", num_repetitions=num_repetitions, client=client, ) expected = { uuid_: [ {"result": f"Result for example {uuid.UUID(uuid_)}"} for _ in range(num_repetitions) ] for uuid_ in uuids } assert results["results"] == expected