```python from langchain.chains import RetrievalQA from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma ``` ```python loader = TextLoader("../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(texts, embeddings) qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()) ``` ```python query = "What did the president say about Ketanji Brown Jackson" qa.run(query) ``` ``` " The president said that she is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and has received a broad range of support, from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." ``` ## Chain Type You can easily specify different chain types to load and use in the RetrievalQA chain. For a more detailed walkthrough of these types, please see [this notebook](/docs/modules/chains/additional/question_answering.html). There are two ways to load different chain types. First, you can specify the chain type argument in the `from_chain_type` method. This allows you to pass in the name of the chain type you want to use. For example, in the below we change the chain type to `map_reduce`. ```python qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="map_reduce", retriever=docsearch.as_retriever()) ``` ```python query = "What did the president say about Ketanji Brown Jackson" qa.run(query) ``` ``` " The president said that Judge Ketanji Brown Jackson is one of our nation's top legal minds, a former top litigator in private practice and a former federal public defender, from a family of public school educators and police officers, a consensus builder and has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." ``` The above way allows you to really simply change the chain_type, but it doesn't provide a ton of flexibility over parameters to that chain type. If you want to control those parameters, you can load the chain directly (as you did in [this notebook](/docs/modules/chains/additional/question_answering.html)) and then pass that directly to the the RetrievalQA chain with the `combine_documents_chain` parameter. For example: ```python from langchain.chains.question_answering import load_qa_chain qa_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") qa = RetrievalQA(combine_documents_chain=qa_chain, retriever=docsearch.as_retriever()) ``` ```python query = "What did the president say about Ketanji Brown Jackson" qa.run(query) ``` ``` " The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." ``` ## Custom Prompts You can pass in custom prompts to do question answering. These prompts are the same prompts as you can pass into the [base question answering chain](/docs/modules/chains/additional/question_answering.html) ```python from langchain.prompts import PromptTemplate prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} Answer in Italian:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) ``` ```python chain_type_kwargs = {"prompt": PROMPT} qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs) ``` ```python query = "What did the president say about Ketanji Brown Jackson" qa.run(query) ``` ``` " Il presidente ha detto che Ketanji Brown Jackson è una delle menti legali più importanti del paese, che continuerà l'eccellenza di Justice Breyer e che ha ricevuto un ampio sostegno, da Fraternal Order of Police a ex giudici nominati da democratici e repubblicani." ```