"""Test ChatOpenAI wrapper.""" from typing import Any, Optional import pytest from langchain_core.callbacks import CallbackManager from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage from langchain_core.outputs import ( ChatGeneration, ChatResult, LLMResult, ) from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from langchain_community.chat_models.openai import ChatOpenAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler @pytest.mark.scheduled def test_chat_openai() -> None: """Test ChatOpenAI wrapper.""" chat = ChatOpenAI( temperature=0.7, base_url=None, organization=None, openai_proxy=None, timeout=10.0, max_retries=3, http_client=None, n=1, max_tokens=10, default_headers=None, default_query=None, ) message = HumanMessage(content="Hello") response = chat([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_chat_openai_model() -> None: """Test ChatOpenAI wrapper handles model_name.""" chat = ChatOpenAI(model="foo") assert chat.model_name == "foo" chat = ChatOpenAI(model_name="bar") assert chat.model_name == "bar" def test_chat_openai_system_message() -> None: """Test ChatOpenAI wrapper with system message.""" chat = ChatOpenAI(max_tokens=10) system_message = SystemMessage(content="You are to chat with the user.") human_message = HumanMessage(content="Hello") response = chat([system_message, human_message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_chat_openai_generate() -> None: """Test ChatOpenAI wrapper with generate.""" chat = ChatOpenAI(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 assert response.llm_output for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_chat_openai_multiple_completions() -> None: """Test ChatOpenAI wrapper with multiple completions.""" chat = ChatOpenAI(max_tokens=10, n=5) message = HumanMessage(content="Hello") response = chat._generate([message]) assert isinstance(response, ChatResult) assert len(response.generations) == 5 for generation in response.generations: assert isinstance(generation.message, BaseMessage) assert isinstance(generation.message.content, str) @pytest.mark.scheduled def test_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatOpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage) @pytest.mark.scheduled def test_chat_openai_streaming_generation_info() -> None: """Test that generation info is preserved when streaming.""" class _FakeCallback(FakeCallbackHandler): saved_things: dict = {} def on_llm_end( self, *args: Any, **kwargs: Any, ) -> Any: # Save the generation self.saved_things["generation"] = args[0] callback = _FakeCallback() callback_manager = CallbackManager([callback]) chat = ChatOpenAI( max_tokens=2, temperature=0, callback_manager=callback_manager, ) list(chat.stream("hi")) generation = callback.saved_things["generation"] # `Hello!` is two tokens, assert that that is what is returned assert generation.generations[0][0].text == "Hello!" def test_chat_openai_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" chat = ChatOpenAI(max_tokens=10) message = HumanMessage(content="Hello") llm_result = chat.generate([[message]]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == chat.model_name def test_chat_openai_streaming_llm_output_contains_model_name() -> None: """Test llm_output contains model_name.""" chat = ChatOpenAI(max_tokens=10, streaming=True) message = HumanMessage(content="Hello") llm_result = chat.generate([[message]]) assert llm_result.llm_output is not None assert llm_result.llm_output["model_name"] == chat.model_name def test_chat_openai_invalid_streaming_params() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" with pytest.raises(ValueError): ChatOpenAI( max_tokens=10, streaming=True, temperature=0, n=5, ) @pytest.mark.scheduled async def test_async_chat_openai() -> None: """Test async generation.""" chat = ChatOpenAI(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 assert response.llm_output for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled async def test_async_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatOpenAI( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert callback_handler.llm_streams > 0 assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled async def test_async_chat_openai_bind_functions() -> None: """Test ChatOpenAI wrapper with multiple completions.""" class Person(BaseModel): """Identifying information about a person.""" name: str = Field(..., title="Name", description="The person's name") age: int = Field(..., title="Age", description="The person's age") fav_food: Optional[str] = Field( default=None, title="Fav Food", description="The person's favorite food" ) chat = ChatOpenAI( max_tokens=30, n=1, streaming=True, ).bind_functions(functions=[Person], function_call="Person") prompt = ChatPromptTemplate.from_messages( [ ("system", "Use the provided Person function"), ("user", "{input}"), ] ) chain = prompt | chat message = HumanMessage(content="Sally is 13 years old") response = await chain.abatch([{"input": message}]) assert isinstance(response, list) assert len(response) == 1 for generation in response: assert isinstance(generation, AIMessage) def test_chat_openai_extra_kwargs() -> None: """Test extra kwargs to chat openai.""" # Check that foo is saved in extra_kwargs. llm = ChatOpenAI(foo=3, max_tokens=10) assert llm.max_tokens == 10 assert llm.model_kwargs == {"foo": 3} # Test that if extra_kwargs are provided, they are added to it. llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2}) assert llm.model_kwargs == {"foo": 3, "bar": 2} # Test that if provided twice it errors with pytest.raises(ValueError): ChatOpenAI(foo=3, model_kwargs={"foo": 2}) # Test that if explicit param is specified in kwargs it errors with pytest.raises(ValueError): ChatOpenAI(model_kwargs={"temperature": 0.2}) # Test that "model" cannot be specified in kwargs with pytest.raises(ValueError): ChatOpenAI(model_kwargs={"model": "text-davinci-003"}) @pytest.mark.scheduled def test_openai_streaming() -> None: """Test streaming tokens from OpenAI.""" llm = ChatOpenAI(max_tokens=10) for token in llm.stream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_astream() -> None: """Test streaming tokens from OpenAI.""" llm = ChatOpenAI(max_tokens=10) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_abatch() -> None: """Test streaming tokens from ChatOpenAI.""" llm = ChatOpenAI(max_tokens=10) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_abatch_tags() -> None: """Test batch tokens from ChatOpenAI.""" llm = ChatOpenAI(max_tokens=10) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled def test_openai_batch() -> None: """Test batch tokens from ChatOpenAI.""" llm = ChatOpenAI(max_tokens=10) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled async def test_openai_ainvoke() -> None: """Test invoke tokens from ChatOpenAI.""" llm = ChatOpenAI(max_tokens=10) result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result.content, str) @pytest.mark.scheduled def test_openai_invoke() -> None: """Test invoke tokens from ChatOpenAI.""" llm = ChatOpenAI(max_tokens=10) result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result.content, str)