import json from abc import ABC, abstractmethod from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage, ToolMessage from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import tool class Person(BaseModel): name: str = Field(..., description="The name of the person.") age: int = Field(..., description="The age of the person.") @tool def my_adder_tool(a: int, b: int) -> int: """Takes two integers, a and b, and returns their sum.""" return a + b class ChatModelIntegrationTests(ABC): @abstractmethod @pytest.fixture def chat_model_class(self) -> Type[BaseChatModel]: ... @pytest.fixture def chat_model_params(self) -> dict: return {} @pytest.fixture def chat_model_has_tool_calling( self, chat_model_class: Type[BaseChatModel] ) -> bool: return chat_model_class.bind_tools is not BaseChatModel.bind_tools @pytest.fixture def chat_model_has_structured_output( self, chat_model_class: Type[BaseChatModel] ) -> bool: return ( chat_model_class.with_structured_output is not BaseChatModel.with_structured_output ) def test_invoke( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) result = model.invoke("Hello") assert result is not None assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 async def test_ainvoke( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) result = await model.ainvoke("Hello") assert result is not None assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 def test_stream( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) num_tokens = 0 for token in model.stream("Hello"): assert token is not None assert isinstance(token, AIMessageChunk) assert isinstance(token.content, str) num_tokens += len(token.content) assert num_tokens > 0 async def test_astream( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) num_tokens = 0 async for token in model.astream("Hello"): assert token is not None assert isinstance(token, AIMessageChunk) assert isinstance(token.content, str) num_tokens += len(token.content) assert num_tokens > 0 def test_batch( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) batch_results = model.batch(["Hello", "Hey"]) assert batch_results is not None assert isinstance(batch_results, list) assert len(batch_results) == 2 for result in batch_results: assert result is not None assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 async def test_abatch( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) batch_results = await model.abatch(["Hello", "Hey"]) assert batch_results is not None assert isinstance(batch_results, list) assert len(batch_results) == 2 for result in batch_results: assert result is not None assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 def test_conversation( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict ) -> None: model = chat_model_class(**chat_model_params) messages = [ HumanMessage(content="hello"), AIMessage(content="hello"), HumanMessage(content="how are you"), ] result = model.invoke(messages) assert result is not None assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 def test_tool_message_histories_string_content( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict, chat_model_has_tool_calling: bool, ) -> None: """ Test that message histories are compatible with string tool contents (e.g. OpenAI). """ if not chat_model_has_tool_calling: pytest.skip("Test requires tool calling.") model = chat_model_class(**chat_model_params) model_with_tools = model.bind_tools([my_adder_tool]) function_name = "my_adder_tool" function_args = {"a": "1", "b": "2"} messages_string_content = [ HumanMessage(content="What is 1 + 2"), # string content (e.g. OpenAI) AIMessage( content="", tool_calls=[ { "name": function_name, "args": function_args, "id": "abc123", }, ], ), ToolMessage( name=function_name, content=json.dumps({"result": 3}), tool_call_id="abc123", ), ] result_string_content = model_with_tools.invoke(messages_string_content) assert isinstance(result_string_content, AIMessage) def test_tool_message_histories_list_content( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict, chat_model_has_tool_calling: bool, ) -> None: """ Test that message histories are compatible with list tool contents (e.g. Anthropic). """ if not chat_model_has_tool_calling: pytest.skip("Test requires tool calling.") model = chat_model_class(**chat_model_params) model_with_tools = model.bind_tools([my_adder_tool]) function_name = "my_adder_tool" function_args = {"a": 1, "b": 2} messages_list_content = [ HumanMessage(content="What is 1 + 2"), # List content (e.g., Anthropic) AIMessage( content=[ {"type": "text", "text": "some text"}, { "type": "tool_use", "id": "abc123", "name": function_name, "input": function_args, }, ], tool_calls=[ { "name": function_name, "args": function_args, "id": "abc123", }, ], ), ToolMessage( name=function_name, content=json.dumps({"result": 3}), tool_call_id="abc123", ), ] result_list_content = model_with_tools.invoke(messages_list_content) assert isinstance(result_list_content, AIMessage) def test_structured_few_shot_examples( self, chat_model_class: Type[BaseChatModel], chat_model_params: dict, chat_model_has_tool_calling: bool, ) -> None: """ Test that model can process few-shot examples with tool calls. """ if not chat_model_has_tool_calling: pytest.skip("Test requires tool calling.") model = chat_model_class(**chat_model_params) model_with_tools = model.bind_tools([my_adder_tool]) function_name = "my_adder_tool" function_args = {"a": 1, "b": 2} function_result = json.dumps({"result": 3}) messages_string_content = [ HumanMessage(content="What is 1 + 2"), AIMessage( content="", tool_calls=[ { "name": function_name, "args": function_args, "id": "abc123", }, ], ), ToolMessage( name=function_name, content=function_result, tool_call_id="abc123", ), AIMessage(content=function_result), HumanMessage(content="What is 3 + 4"), ] result_string_content = model_with_tools.invoke(messages_string_content) assert isinstance(result_string_content, AIMessage)