"""Implements Program-Aided Language Models. This module implements the Program-Aided Language Models (PAL) for generating code solutions. PAL is a technique described in the paper "Program-Aided Language Models" (https://arxiv.org/pdf/2211.10435.pdf). """ from __future__ import annotations import ast import warnings from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.schema import BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel from langchain.utilities import PythonREPL from pydantic import Extra, Field, root_validator from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"] class PALValidation: SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name def __init__( self, solution_expression_name: Optional[str] = None, solution_expression_type: Optional[type] = None, allow_imports: bool = False, allow_command_exec: bool = False, ): """Initialize a PALValidation instance. Args: solution_expression_name (str): Name of the expected solution expression. If passed, solution_expression_type must be passed as well. solution_expression_type (str): AST type of the expected solution expression. If passed, solution_expression_name must be passed as well. Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE. allow_imports (bool): Allow import statements. allow_command_exec (bool): Allow using known command execution functions. """ self.solution_expression_name = solution_expression_name self.solution_expression_type = solution_expression_type if solution_expression_name is not None: if not isinstance(self.solution_expression_name, str): raise ValueError( f"Expected solution_expression_name to be str, " f"instead found {type(self.solution_expression_name)}" ) if solution_expression_type is not None: if ( self.solution_expression_type is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION and self.solution_expression_type is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE ): raise ValueError( f"Expected solution_expression_type to be one of " f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION}," f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE})," f"instead found {self.solution_expression_type}" ) if solution_expression_name is not None and solution_expression_type is None: raise TypeError( "solution_expression_name " "requires solution_expression_type to be passed as well" ) if solution_expression_name is None and solution_expression_type is not None: raise TypeError( "solution_expression_type " "requires solution_expression_name to be passed as well" ) self.allow_imports = allow_imports self.allow_command_exec = allow_command_exec class PALChain(Chain): """Implements Program-Aided Language Models (PAL). This class implements the Program-Aided Language Models (PAL) for generating code solutions. PAL is a technique described in the paper "Program-Aided Language Models" (https://arxiv.org/pdf/2211.10435.pdf). """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated]""" prompt: BasePromptTemplate = MATH_PROMPT """[Deprecated]""" stop: str = "\n\n" """Stop token to use when generating code.""" get_answer_expr: str = "print(solution())" """Expression to use to get the answer from the generated code.""" python_globals: Optional[Dict[str, Any]] = None """Python globals and locals to use when executing the generated code.""" python_locals: Optional[Dict[str, Any]] = None """Python globals and locals to use when executing the generated code.""" output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False """Whether to return intermediate steps in the generated code.""" code_validations: PALValidation = Field(default_factory=PALValidation) """Validations to perform on the generated code.""" timeout: Optional[int] = 10 """Timeout in seconds for the generated code to execute.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating a PALChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using one of " "the class method constructors from_math_prompt, " "from_colored_object_prompt." ) if "llm_chain" not in values and values["llm"] is not None: values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() code = self.llm_chain.predict( stop=[self.stop], callbacks=_run_manager.get_child(), **inputs ) _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose) PALChain.validate_code(code, self.code_validations) repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals) res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout) output = {self.output_key: res.strip()} if self.return_intermediate_steps: output["intermediate_steps"] = code return output @classmethod def validate_code(cls, code: str, code_validations: PALValidation) -> None: try: code_tree = ast.parse(code) except (SyntaxError, UnicodeDecodeError): raise ValueError(f"Generated code is not valid python code: {code}") except TypeError: raise ValueError( f"Generated code is expected to be a string, " f"instead found {type(code)}" ) except OverflowError: raise ValueError( f"Generated code too long / complex to be parsed by ast: {code}" ) found_solution_expr = False if code_validations.solution_expression_name is None: # Skip validation if no solution_expression_name was given found_solution_expr = True has_imports = False top_level_nodes = list(ast.iter_child_nodes(code_tree)) for node in top_level_nodes: if ( code_validations.solution_expression_name is not None and code_validations.solution_expression_type is not None ): # Check root nodes (like func def) if ( isinstance(node, code_validations.solution_expression_type) and hasattr(node, "name") and node.name == code_validations.solution_expression_name ): found_solution_expr = True # Check assigned nodes (like answer variable) if isinstance(node, ast.Assign): for target_node in node.targets: if ( isinstance( target_node, code_validations.solution_expression_type ) and hasattr(target_node, "id") and target_node.id == code_validations.solution_expression_name ): found_solution_expr = True if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom): has_imports = True if not found_solution_expr: raise ValueError( f"Generated code is missing the solution expression: " f"{code_validations.solution_expression_name} of type: " f"{code_validations.solution_expression_type}" ) if not code_validations.allow_imports and has_imports: raise ValueError(f"Generated code has disallowed imports: {code}") if ( not code_validations.allow_command_exec or not code_validations.allow_imports ): for node in ast.walk(code_tree): if ( (not code_validations.allow_command_exec) and isinstance(node, ast.Call) and ( ( hasattr(node.func, "id") and node.func.id in COMMAND_EXECUTION_FUNCTIONS ) or ( isinstance(node.func, ast.Attribute) and node.func.attr in COMMAND_EXECUTION_FUNCTIONS ) ) ): raise ValueError( f"Found illegal command execution function " f"{node.func.id} in code {code}" ) if (not code_validations.allow_imports) and ( isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom) ): raise ValueError(f"Generated code has disallowed imports: {code}") @classmethod def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: """Load PAL from math prompt. Args: llm (BaseLanguageModel): The language model to use for generating code. Returns: PALChain: An instance of PALChain. """ llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT) code_validations = PALValidation( solution_expression_name="solution", solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, ) return cls( llm_chain=llm_chain, stop="\n\n", get_answer_expr="print(solution())", code_validations=code_validations, **kwargs, ) @classmethod def from_colored_object_prompt( cls, llm: BaseLanguageModel, **kwargs: Any ) -> PALChain: """Load PAL from colored object prompt. Args: llm (BaseLanguageModel): The language model to use for generating code. Returns: PALChain: An instance of PALChain. """ llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT) code_validations = PALValidation( solution_expression_name="answer", solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE, ) return cls( llm_chain=llm_chain, stop="\n\n\n", get_answer_expr="print(answer)", code_validations=code_validations, **kwargs, ) @property def _chain_type(self) -> str: return "pal_chain"